集 最先端を支える成形・加工プロセス

カルコゲナイドガラスへのインプリント加工による 赤外デバイスの製作

滋賀県立大学 工学部 ガラス工学研究センター

山田 逸成

Fabrication of infrared device by direct imprinting process on chalcogenide glass

Yamada Itsunari

University of Shiga Prefecture Center for Glass Science and Technology, School of Engineering

1. はじめに

特

放射温度計測や防災・防犯のセキュリティー システム,そして夜間のドライビングをより安 全にしてくれるナイトビジョンシステムなど, 赤外線技術は幅広く利用されている。今後も日 常の快適性や安全性,省エネルギー対策を背景 に赤外線技術の要求は益々高まっていくと考え られる。人体を正確に検知するためには,黒体 放射の式に基づき,人間の体温に相当する波長 10 μm 付近で使用可能な赤外線センサが用いら れており,この波長域で優れた透過特性を持つ 赤外透過材料,および赤外デバイスが求められ ている。樹脂材料や石英は可視域~近赤外域で 透過性に富んでいるが,波長2μm以上の赤外 域では吸収帯を有するため,窓材料として使用 することが困難である。それゆえ,ゲルマニウ ム(Ge)やシリコン(Si)のような半導体材料 や、フッ化バリウム(BaF₂)などのフッ化物、 そして硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe) などが良好な赤外透過特性を示すことから¹⁻⁶、 基板材料として赤外デバイスの作製に用いられ るが、その一方で材料によって製造コストや耐 候性、加工性に問題があり、デバイスとして高 価になってしまうことが問題であった。本稿で は、赤外透過性、そして成形性に優れ、毒性の 低い Sb-Ge-Sn-S系カルコゲナイドガラス(IIR -SF 1)へのインプリント加工技術によるサブ 波長周期構造の形成、そして赤外用偏光子の作 製について記述する。

2. Sb-Ge-Sn-S 系カルコゲナイドガラ ス^{⁷⁾}

カルコゲン元素 (S, Se, Te) を主成分とし て含むガラスはカルコゲナイドガラスと呼ば れ, ヒ素 (As) やセレン (Se) のような有毒 元素を含むものが多いことから扱いが困難であ った。IIR-SF1は, 硫黄 (S) を主体とした S

^{〒522-8533} 滋賀県彦根市八坂町 2500 TEL 0749-28-9563 E-mail: yamada. i@e. usp. ac. jp

図1 (a) カルコゲナイドガラス (IIR-SF® 1) の透過スペクトル (基板厚 2 mm) と, (b) 屈折率 n と消衰係数 ĸ.

-Sb-Sn-Ge 系ガラスであり、広いガラス化範 囲を有する組成系である。図1に示すように、 赤外線の透過範囲は1~11 μm, 屈折率は約 2.7@10 μm, そして化学的耐久性は耐水性1 級, 耐酸性1級 [JOGIS 06-2009:光学ガラス の化学的耐久性の測定方法(粉末法)]である。

一般的に屈伏温度は、組成系にもよるが、ガ ラス転移温度より 20~30℃ 高い温度になるこ とが知られている。IIR-SF1のガラス転移温 度は、230℃ であるため、屈伏温度は 250~ 260℃ と予想される。なお、ガラス転移温度 は、示差走査熱量測定(DSC)により測定した (リガク製,DSC 8320,昇温速度:5℃/min)。 加熱により、軟化変形することから、モールド 成型により、研磨では作製できない複雑な形状 の素子を安価に量産することが可能である。

3. SiC モールドの作製とカルコゲナイ ドガラスへの成形

高い消光比を持つ偏光子を作製する上で、使 用波長よりも充分に短い周期を持つ金属格子構 造を形成することが必要である。このような微 細周期構造をインプリント加工によって形成す る場合、モールドの作製が重要となる。モール ド基板は、高温下でも充分な硬度をもち、耐熱 性・加工性に優れた炭化シリコン(SiC)を使 用した⁸⁻¹¹⁾。SiC 基板の表面にスパッタ法でタン グステンシリサイド膜 (Tungsten Silicide; WSi 膜)を成膜し、その表面に塗布したフォトレジ ストを格子構造にパターニングを行う。フォト レジストへのパターニングには紫外レーザーに よる二光東干渉露光法を用いた。得られたレジ ストパターンをマスクとして、SF₆ガスでWSi 層を、そしてその WSi 格子をマスクとして CHF₃ ガスで SiC のドライエッチングを行っ

図2 二光束干渉露光法とドライエッチングで作製した SiC モールド表面の SEM 写真.

図3 図2で示した SiC モールドにより、インプリントされたカルコゲナイドガラスの表面 SEM 写真.

た。その試料表面の SEM 写真を図 2 に示す。 周期 500 nm,格子深さ 280 nm の格子構造を 得ることができた。格子構造の形状は、インプ リント時の離形工程においてガラスやモールド の破損や負担を抑えるため⁸⁾,図 2 に示すよう に、尖鋭形状の構造に形成した。

作製した SiC モールドによるカルコゲナイド ガラスへのインプリント加工を行った。ガラス 成形にはランプ加熱方式の市販のプレス機を用 いている。モールド表面の酸化を防止するため に成形室内を窒素置換した後、ガラスの屈伏点 (At) 近傍まで加熱し、1 Pa 程度の真空下でプ レスする。屈伏点近傍(高い粘度域)でインプ リントを行う理由は、高温域で生じやすいガラ スとモールドとの融着を抑えるためである。し たがって、モールド形状、離型膜の最適化およ びモールドと融着しにくいガラス組成の開発 が、高い周期構造を得るうえで非常に重要とさ れている。本実験でも屈伏点近傍と推測される 253℃に加熱した状態で、炭素膜を成膜した SiC モールドをカルコゲナイドガラスに3.8 MPa, 90 秒間押し当てた。図3に示すように、 破損することなく、均一に転写することができ た。

4. 赤外用偏光子の作製

一般的に偏光子に求められる特性として, ①高い消光比(透過する偏光と遮光される偏光 との比が大きいこと) ②高い透過率 ③広い波長域 ④コンパクトさ ⑤高い耐久性 が挙げられる^{12,13)}。全ての項目を満たす赤外用 偏光子は存在しないが、①~④の項目に対し、 バランス良く特徴を持ち合わせている図4に示 すようなワイヤグリッド偏光子が赤外域で多用 される。一般的に赤外用のワイヤグリッド偏光 子は、前述した赤外透過基板表面に波長(2~20 µm)よりも充分に狭い数百 nm 周期の金属格

子を形成したものである。金属格子に入射した 光は、金属格子に垂直な偏光は透過するが、平 行な場合には、金属格子に存在する伝導電子が

図4 ワイヤグリッド偏光子.

図5 図3の試料表面に Al の斜め蒸着を行った試料の SEM 写真.

格子の長さ方向に振動するため,吸収(ジュー ル熱に変化)・反射され,透過しない¹³⁾。この 性質を利用して,ワイヤグリッド偏光子は透過 型偏光子として用いられている。この偏光子は 構造上,半導体プロセスである露光・現像・エ ッチングの工程を要するため,低コスト化が困 難であった。カルコゲナイドガラス基板への直 接インプリント加工技術を構築することができ れば,工程数の低減化・低コスト化が可能にな る。カルコゲナイドガラスへの直接インプリン ト加工技術を利用して赤外用ワイヤグリッド偏 光子の作製を試みたのは筆者らが初めてであ る^{14,15)}。

図3に示したインプリント加工されたカルコ ゲナイドガラスの表面に Al の斜め蒸着を行

図6 作製した試料の偏光スペクトルと基板の透過ス ペクトル.図中のTMとTEは金属格子に対し て垂直,または平行な偏光方向の透過スペクト ルを示している.

い, Al 格子を形成した。その写真を図5に示 す。この試料の透過スペクトルを図6に示す。 5~9 μm の波長域において, TM 偏光(格子に 対して垂直方向の偏光)透過率は60%, 消光 比は20 dB(TE:TM=1:100)以上であり, 製品レベルに達する性能を得ることができた。 波長 4 μm 以下の短波長域における透過率の低 下は, Al 格子による回折損失によるものであ り,より狭周期の格子構造を形成すれば改善さ れると推測される。

5. おわりに

カルコゲナイドガラスへのインプリント加 工、およびワイヤグリッド偏光子への応用に関 する最近の研究成果について述べた。二光束干 渉露光法とドライエッチングを用いて、赤外光 の波長よりも小さな周期の格子構造を有する SiC モールドを作製し、カルコゲナイドガラス へのインプリント加工に取り組んだ。さらに, Al 蒸着を行うことにより、製品レベルの消光 比を持つ赤外用偏光子を得ることに成功した。 今後は、より酸素ガスで容易に加工することが 可能なグラッシーカーボンをモールドとして用 い. カルコゲナイドガラスへのインプリント加 工を試みるほか. 両面インプリント加工技術の 構築による反射防止構造や位相制御構造などの 機能の複合化ができれば、赤外デバイスのより 一層の高機能化が期待できる。

謝辞

本研究は,北海道大学電子科学研究所の西井 準治教授および龍谷大学理工学部の斉藤光徳教 授,五鈴精工硝子株式会社の山下直人氏との共 同研究によるものである。

参考文献

- 赤外線技術研究会:赤外線工学-基礎と応用-, オーム社, 99-101, (1991).
- 2) 久野治義;赤外線工学,電子情報通信学会,87-92,(1994).
- 3) I. Yamada, J. Nishii, and M. Saito; Proc. SPIE, 6414, 64141 V (2007).
- 4) I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, Opt. Lett., 33, 258 (2008).
- 5) M. Saito, T. Yamamoto, I. Yamada, J. Nishii, S. Mihara, and M. Urano; Jpn. J. Appl. Phys., 49, 052503 (2010).
- 6) http://www.specac.com/products/infraredpolarizer

- 7) http://www.isuzuglass.com/development/iir. html
- 8) T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, and J. Nishii ; Jpn. J. Appl. Phys. 47, 4746 (2008).
- 9) T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai; Jpn. J. Appl. Phys. 48, 06 FH 20 (2009).
- 10) K. Yamada, M. Umetani, T. Tamura, Y. Tanaka, H. Kasa, and J. Nishii ; Appl. Surf. Sci. , 255, 4267 (2009).
- 11) 西井準治;ニューガラス, 25, 32 (2010).
- 12) 戸田伸一郎;光技術コンタクト, 47, 238 (2009).
- 13) 大井みさほ、光学素子の基礎と活用法、学会出版 センター、112-119、(1996).
- 14) I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii; Opt. Lett., 36, 3882 (2011).
- 15) I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii; Jpn. J. Appl. Phys., 51, 012201 (2012).