二次電池用結晶化ガラス材料

日本電気硝子(株) 技術統括部

坂本 明彦

Glass-ceramic Materials for Rechargeable Batteries

Akihiko Sakamoto

Nippon Electric Glass Co., Ltd. Corporate Technology Division

はじめに

特

リチウムイオン二次電池に代表される蓄電デ バイスは、今後の自動車、エネルギーおよび通 信産業においてより重要な役割を担うと考えら れる。電池性能および安全性の一層の向上には 優れた電極材料の開発が必要であり、正・負極 材料とも活発な研究開発が進められている。ガ ラス状態を経由する電極材料の合成プロセスで は、非晶質相の作用によって、従来の電極材料 にはない効果が発現する可能性がある。本稿で は、結晶化ガラス系電極材料の開発事例を紹介 する。

リン酸鉄リチウム系結晶化ガラス

リン酸鉄リチウム(LiFePO4:LFP)は、自 動車、電力貯蔵用リチウムイオン二次電池の正 極材料として実用化が進められている。LFP は高い安全性に加え,希少元素を含まない長所 を有する一方,電子伝導性が低く,かつ,リチ ウムイオンの伝導パスが結晶のb軸方向に限 定されるという短所を有する。このため高速の 充放電において充分な電池特性が確保し難いと いう課題がある。

著者らは、ガラス粉末を結晶化させるプロセ スによって LFP を合成し、正極材料への適用 を検討してきた¹¹。 LFP 結晶化ガラスは、ガラ ス粉末と有機成分のコンポジットを約 800℃ の 還元雰囲気中で熱処理することによって作製さ れる。有機成分の熱分解によって生じたカーボ ンがガラス粒子の融着を防止するとともに、粒 子表面に導電性層を形成する。 LFP 結晶は、 ガラス中では以下の二つのルートによって析出 する²¹。(i) 低温域で移動度の高い Fe²⁺イオン がガラス内部に LFP 微結晶を形成し、その後 温度上昇とともに成長する。(ii) Li₃Fe₂(PO₄)₃ および Fe₂O₃ がガラス内部に析出し、Fe³⁺の Fe²⁺への還元にともない LFP に転移する。い

^{〒520-8639} 滋賀県大津市晴嵐2丁目7-1 TEL 077-537-1312 FAX 077-534-3572 E-mail:asakamoto@neg.co.jp

 図1 LFP 結晶化ガラス粒子の表面近傍の構造.白 点線は粒子の最表面を示す.
 A, B, C の各領域は、それぞれ観察用固定樹 脂、非晶質相、LFP 結晶相に対応する.

ずれのルートにおいても結晶化はガラス内部から始まり,結晶化後に粒子表面に薄い非晶質相が形成される。図1に粒子表面付近の断面写真を示す。粒子表面に非晶質層の存在が認められる。この非晶質層はカーボンを約30原子%含有するリン酸リチウム相であり,LFP結晶よりも電子,リチウムイオン伝導性に優れると考えられる。

図2にLFP結晶化ガラス粉末を正極に用いた電池の放電速度に対する容量,電圧の変化を示す³⁾。比較のため固相反応法で作製された LFPセラミックのデータも合わせて示した。 放電速度(C値)が0.1Cと遅い場合,LFP 結晶化ガラスと LFP セラミックはともに理論 値に近い容量(160 mAh/g)と放電電圧(3.4 V)を示す。しかし、放電速度が高くなるにつ れ、セラミックでは容量、電圧とも急激に低下 する。これに対し結晶化ガラスではこの傾向が 抑制され、10Cにおいても0.1Cの約75%の 容量と約90%の電圧を維持している。これは LFP 結晶化ガラスを用いた正極がセラミック を用いたものよりも低抵抗であることを示して おり、結晶化ガラス粒子表面の非晶質層が電子 やリチウムイオンの移動度向上に寄与するもの と考えられる。図3は、LFP 結晶化ガラス粉 末をLi₂S-P₂S₅系固体電解質と組み合わせて作 製した全固体リチウムイオン二次電池の 50℃ における充放電曲線である⁴⁾。図から100 mAh /gを超える充放電容量が得られることが分か る。従来の LFP セラミックでは、硫化物固体電 解質との組み合わせによる良好な作動例は報告 されていない。図3の結果は、LFP 結晶化ガ ラスの表面が、固体電解質との界面設計におい ても重要な役割を果たすことを示唆している。

スズリン酸系結晶化ガラス

リチウムイオン二次電池の負極には,グラフ ァイトやチタン酸リチウム(LTO)が用いら

図2 LFP 結晶化ガラスを用いた電池の放電速度に対する容量(a)および電圧(b)の変化.

図3 LFP 結晶化ガラスを用いた全固体電池の充放 電曲線. 電池構成: In/80 Li₂S-20 P₂S₅/LFP. 作動温 度:50℃.⁴⁾

れている。グラファイトは繰り返し充放電特性 に優れた材料であるが、低温での容量低下が大 きく、さらに作動電位が0.1V(v.s.Li/Li⁺) と低いためリチウムの樹状結晶(デンドライ ト)の析出による短絡のリスクが高い。LTO は電位が1.6Vと高いためデンドライトの析出 が起こらず、かつ低温特性にも優れた材料であ る。しかし電位がこのレベルまで高いと電池の エネルギー密度が大幅に低下する問題がある。

スズはリチウムとの可逆的な合金化反応によ って負極として作用し,大きな容量が得られる 利点がある。しかし合金化反応による体積変化 が大きく,繰り返し充放電による電極の特性劣 化が著しい。著者らは,非晶質リン酸マトリッ

クス中にスズの微結晶を析出させた材料 (SPO)を作製し、合金化時の体積変化の影響 を軽減させることを検討した⁵⁾。所定組成のス ズリン酸ガラスを平均粒径約2µmの粉末にし て電池に負極として組み込み. 充放電を行っ た。図4は充放電時のスズリン酸ガラスの構造 変化をX線回折によって評価したものであ る。初期状態ではリン酸および酸化スズの非晶 質構造に対応するハローが見られる (A)。充 電によってリチウムイオンが挿入されると.酸 化スズのハローは消滅し Sn-Li 合金のピーク が現れる(B)。放電を行うと合金からLiが脱 離して Sn 結晶が析出し(C).以降の充放電で は (B) - (C) 間の相転移が繰り返される。図 5に放電状態にある SPO の透過電子顕微鏡写 真を示す。マトリックス中に Sn 結晶が分散析 出した状態が確認できる。

図6はSPO負極を用いた電池の種々の温度 における放電容量の変化を示している。比較の ためグラファイトを用いた場合のデータも併せ て示した。SPOは安定した繰り返し放電特性 を示し、-5℃においてもグラファイトの理論 容量よりも高い容量を有する。さらに-20℃ においても200mAh/g近い放電容量が維持さ れる。また、SPOの作動電位は0.4 V とグラ ファイトに比べてやや高く、デンドライトの析 出防止と、高いエネルギー密度の両立に適した レベルにある。さらに、SPOは電池の短絡時に 高い絶縁性を示し、ラミネート電池への釘刺し

図4 XRD による充放電時の SPO の構造評価. (A) 初期状態, (B) 充電状態, (C) 放電状態.

図5 SPO 粒子の透過電子顕微鏡写真(放電状態).

図6 SPO 負極を用いた電池の繰り返し放電特性. 点線はグラファイトの理論容量を示す.

試験において高い安全性が確認されている。。

ナトリウムイオン電池用材料

ナトリウムイオン二次電池は、リチウムイオ ン二次電池に次ぐ高いエネルギー密度と、安価 な資源によって製造可能なことから次世代蓄電 デバイスとして期待されている。しかし、その 正極材料については現在のところ実用的な報告 はない。本間ら⁷はガラス粉末を結晶化させる 方法によって新規な Na₂FeP₂O₇結晶の合成に 成功し、正極への適用性を示した。本結晶は優 れたナトリウムイオン伝導性と高い構造安定性 を有し、平均粒径 2μm の結晶化ガラス粉末に おいて,理論値の90%の容量と安定した繰り 返し充放電特性を示すことが確認されている。 この材料は資源確保が容易な元素のみで構成さ れており,安価で実用的な正極材料開発への契 機となると考えられる。

おわりに

結晶化ガラスの二次電池電極材料への適用に ついて開発事例を紹介した。LFP 結晶化ガラ スは粒子表面にカーボンを含有する非晶質相を 有し、リチウムイオン二次電池の正極材料とし て、セラミックよりも優れた高速充放電特性と 全固体電池への適用性を示す。SPO は、非晶 質相の存在によって結晶相の体積変化の影響を 軽減し、優れた繰り返し充放電特性を実現した 負極用材料である。

結晶化ガラスはガラスを経由するプロセスに よって作製されるため、材料中に非晶質相を形 成させる自由度がある。非晶質相は結晶に比べ てオープンな三次元構造を有するためイオン伝 導に有利であり、さらに異種元素のドープも行 い易い。ガラスからの結晶析出プロセスには、 セラミックスの作製プロセスでは困難な結晶の 合成や材料構造を実現できるポテンシャルがあ る。リチウム系に加え、ナトリウム系等の次世 代蓄電デバイスの開発において、ガラス系材料 の展開が期待される。

【引用文献】

- 1) 永金知浩ほか,第50回電池討論会予稿集,102 (2009)
- 2) K. Nagamine et al., J. Cer. Soc. Jpn 120 (2012) 1-6
- 3) T. Nagakane et al., Solid State Ionics 206 (2012) 78
 -83
- 4) A. Sakuta et al., Chemistry Letters 41 (2012) 260-261
- H. Yamauchi et al. 218th ECS meeting, abs. #367 (2010)
- 6) 山野晃裕ほか, 第53回電討論会予稿集, 11 (2012)
- 7) T. Honma et al., J. Cer. Soc. Jpn 120 (2012) 344-346