フッ酸直接接合を用いた多層膜光学素子の作製

*¹ニュ - ガラスフォーラム,² 岡本硝子(株) ³産業技術総合研究所関西センタ-,⁴京都大学

陳 路*1・西村 啓道²・福味 幸平³・西井 準治³ 平尾 一之⁴

Fabrication of multilayer thin film optical device by HF acid bonding

Lu Chen^{*1}, Hiromichi Nishimura², Kohei Fukumi³, Junji Nishii³ Kazuyuki Hirao⁴

> ^{*1}New Glass Forum ²Okamoto Glass, Co., Ltd. ³National Institute of Advanced Industrial Science and Technology ⁴Kyoto University

1. 序論

誘電体光学多層膜フィルタは重要な光学素子 として古くからカメラや眼鏡などに使われてき た。近年,光通信とディスプレイ産業の発展に 伴い,更なる多層膜素子の高性能化が求められ ており,従来の多層膜製品の製造技術の進歩が あり,百層を超えるフィルタやアレイ状のフィ ルタが開発されている。その作製プロセスで は,多層化に伴い成膜時の膜質の劣化や膜厚の 制御誤差の増加が生じたり,アレイ化のための 接着剤の経年変化が生じるため,歩留まりある いは性能面で限界が見られた。これらの問題を 解決するための検討が盛んに行われてきた。

ガラス材料を組み合わせた光学素子の作製に は樹脂接着剤を用いた接合方法は広く利用され ている。しかしながら樹脂の接着剤を使用した 場合,厳しい使用環境での変色あるいは剥離が 大きな問題として顕在化してきた。有機系接着 剤を使用しない直接接合方法が,高い組み立精 度を実現し,耐熱と耐紫外線性能も達成できる ものと期待できる。

Optical Contact¹¹は光学ガラス材料の直接接 合方法として知られており、ガラス同士の直接 接合によく利用されてきた。しかし、光学多層 膜での直接接合はあまり行われていない。一 方、半導体産業の進歩に伴い、SOI (Silicon On Insulator)の製造を目的としたシリコンウエ ハの直接接合研究が進められた。これをきっか けに、SOI に留まらず様々の材料での直接接合 の検討がなされるになった²⁰。ガラス間の直接 接合技術として、溶融接合、フッ酸接合、陽極 接合法が挙げられる³⁰⁻⁵⁰。この中でフッ酸接合 法は石英ガラスの接合に使用されており、SiO₂ 層を介して、低い接合温度で高い接合強度を実 現した方法である。

そこで我々はフッ酸による誘電体多層膜の直 接接合法を検討し,多層膜構造とガラスの直接 接合とその機能素子化を目指した。本稿にはフ ッ酸接合法の特徴,ガラス多層膜機能性素子の

^{*〒563-8577} 大阪府池田市緑丘 1-8-31 産業技術総合研究所 関西センター内 TEL 072-751-7946 FAX 072-751-4027 E-mail: chen-kansai@aist.go.jp

作製およびその実用化について報告する。

2. 接合方法

イオンアシスト真空蒸着法により最表面 SiO₂とするTa₂O₅/SiO₂の多層膜をガラス基板 上に成膜し,接合用試料とした。試料を洗浄後, 1%フッ酸溶液を試料に滴下した後,試料を重 ね合せ,温度・圧力をかけて接合した。本研究 では図1(a)(b)に示すような2種の接合,す なわち膜面同士の接合と膜面とガラス基板の接 合を行った。

接合強度は引張試験で評価した。接合した試 料をエポキシ樹脂でフォースゲージの実験台に 固定し,上から引張り,試料が界面から剥離す る時の最大の引張力を接合強度とした。接合界 面を走査電子顕微鏡(SEM)あるいは透過型 電子顕微鏡(TEM)で観察した。接合試料の 機能性を評価するため,透過あるいは反射特性 を分光光度計により測定した。

まず,5×5×1 mmの24 層多層膜試料を用いて接合した試料における接合強度の評価結果

を報告する。

図2にフッ酸接合により接合した多層膜試料 の接合強度と接合時のプレス圧力(接合温度 160℃)の関係を示す。圧力が増すに伴い,接 合強度も増加する傾向が見られた。膜面同士を 接合し,高い接合強度を得るには20 MPa 以上 の圧力が必要であることが分かった。その圧力 範囲で5 MPa 以上の接合強度に到達した。多 層膜をつけたガラス試料の表面には応力による そりがあり,このような高い圧力は二つの接合 面でのそりを打ち消し平らにし,試料面をナノ レベルに接触させるために必要である。一方, 膜とガラスの接合は膜と膜の接合と比べて,そ りの悪影響が少ないので6 MPa 以上の高い接 合強度が得られた。

図3に1%のフッ酸および水を用いて, 膜/ ガラスを接合した際の接合強度を比較した。フ ッ酸を使用することでより高い接合強度が得ら れた。

膜/膜の接合にはフッ酸を使用しないと接合 できないことが分かっている。そった多層膜同 士を接合するにはそりの応力に耐えれる高い接 合強度が必要であることを示す。即ちフッ酸接 合方法は低い接合温度で高い接合強度を達成で き,多層膜の接合に適している。

4. 膜と膜の接合による多層膜構造の作製

対称な膜構成をもつ 47 層エッジフィルタを 設計し,設計の 1/2 の膜層数(24 層)からな る 2 枚の多層膜試料を図 1(a)のように膜面同

図4 47 層多層膜接合構造体の光学特性と断面 SEM 写真

士で接合し、47 層多層膜がガラスの中にある フィルタを作製した。図4にフッ酸接合法によ って作製したエッジフィルタ多層膜構造の透過 特性と断面 SEM 写真を示す。多層膜構造の透 過特性をシミュレーションした結果、SiO₂ 接 合層の膜厚誤差は10 nm 以内に抑えなければ ならない。試作品の測定値と設計値がほぼ一致 するので、設計通りの透過特性を達成すること ができた。よって、フッ酸接合技術で接合層の 膜厚を正確に制御できたと考えられる。右の SEM 写真で真中の層が接合層であり、隣接す る真空蒸着で作製した層と区別できず,欠陥の ない接合層が得られた。

図5に同じ方法によって作製した63層バン ドパスフィルタ多層膜構造の透過特性と断面 SEM 写真を示す。接合によってフィルタの層 数を増やし、パスバンドの急峻な立ち上がりが 実現した。この多層膜構造で接合層の許容誤差 は20 nm であり、設計通りの透過特性が得ら れたと推定された。

この接合方法によって,従来の真空蒸着では 困難とされる層数の多い多層膜構造を作製可能

図5 63 層多層膜接合構造体の光学特性と断面 SEM 写真

と考えられる。

4. 膜とガラスの接合による多層膜の集積化

図6にSiO2 膜とガラスを接合した領域の断 面形態を示す。SEM 写真で接合層での欠陥が 観察されず,TEM 写真では膜とガラスの接合 界面で原子レベルの融合が見られた。フッ酸接 合で高品質な接合を実現できることが示され た。

多層膜を集積化する1例としてR,G,Bの 3波長を合波または分波するフィルタアレイを 試作した。素子の模式図および作製プロセスを 図7に示す。この素子は図7(C)に示すように R,G,B波長を反射する多層膜ミラーをガラ スの中に45°斜めに積層し,入射する光をR, G,Bの順に分離するものである。作製手順と しては,まず真空蒸着法で作った3種の多層膜 フィルタを,R,G,Bの順に膜面と基板ガラ ス面で接合し(A),一つのガラスブロックにし た後,45度にカットする(B)ことにより,フィ ルタアレイ(C)を作製したものである。

図8に作製した多層膜フィルタアレイの写真 と実測した透過特性を示した。このフィルタア レイはほぼ設計通りの合分波特性を示した。透 過率のロスはガラス表面反射によるものであ る。さらに,接合したフィルタを450℃,20時 間熱処理した後も,外観および透過特性に変化 はなく,従来の有機接着剤を使用したものには ない,優れた耐熱性が確認された。

このようにフッ酸接合法を用いることにより,優れた耐久性を有する偏光分離素子,ビームスプリタなどの機能性素子も作製できる。

5.まとめ

フッ酸接合方法は多層膜の直接接合を可能に し、低い接合温度で高い接合強度と高品質の接 合界面を得ることができる。この方法を用い、 多層膜干渉フィルタと RGB フィルタアレイの 作製に成功した。接合層の膜厚制御精度は10 nm 以内に可能であった。本接合法はより信頼

図6 膜とガラスの接合エリアの断面 SEM と TEM 写真

51

図8 多層膜フィルタアレイの試作品写真と透過特性

性の高い樹脂レス接合として,誘電体多層膜の 膜層数を倍増させる手段,及び多層膜構造をア レイ化させる手段として有効であることが分か った。さらに様々な他の機能性素子への応用が 期待できる。

謝辞

本研究は、ナノテクノロジープログラム(ナ ノマテリアル・プロセス技術)「ナノガラス技 術」の一環として新エネルギー・産業技術総合 開発機構(NEDO)からの委託を受けて行われ た。

参考文献

- 1. 1 R. N. Smartt and J. V. Ramsay, J. Sci. Instrum., 41, pp. 514, (1964).
- 2. Q.-Y. Tong, B 87, pp. 323-328. (2001).
- 3. P.W. Barth, *Sensors and Actuators A*, 23, pp. 919–926, (1990).
- H. Nakanishi, T. Nishimoto, R. Nakamura, A. Yotsumoto, T. Yoshida and S. Shoji, *Sensors and Actuators A*, 79, pp. 237–244. (2000).
- Thomas M. H. Lee, Debbie H. Y. Lee, Connie Y. N. Liaw, Alex I. K. Lao and I-Ming Hsing, Sensors and Actuators A, 86, pp. 103–107, (2000).