ガラスレンズのモールドプレス成形シミュレーション

信州大学工学部機械システム工学科

荒井政大

Numerical Simulation for Press Molding of Glass Lens

Masahiro Arai Department of Mechanical Systems Engineering, Shinshu University

1. はじめに

デジタルカメラや液晶プロジェクタなどの民 生機器,内視鏡に代表される医療機器,レー ザーなどを用いた各種の分析機器など,ガラス 製光学デバイスの用途は年々拡大しつつある。 特に近年はガラスレンズの生産コストの低減, また非球面化などへの要請から,モールドプレ ス成形による製造法が注目を集めるようになっ た^[1]。

ガラスレンズのモールドプレスに関する数値 シミュレーションにおいては、ガラスの弾性係 数が温度と時間に依存する熱粘弾性体であるこ とを考慮する必要がある²²。ガラスの熱粘弾性 特性の評価法には、市販の熱粘弾性試験装置を 用いて周期的な外力に対する応答、すなわち貯 蔵弾性率、損失弾性率、損失正接(tanδ)を求 めた後, Maxwell モデルや Foigt モデルといっ た等価的な粘弾性モデルに置き換える方法が一 般的である。また, ひずみ速度一定試験⁽³⁾や応 力緩和試験⁽⁴⁾を用いた評価方法も広く用いられ ているようである。

他方,著者らのグループでは,一軸圧縮ク リープ試験により得られた結果を用いて,大変 形解析にも適用可能な高い近似精度を有する緩 和弾性係数を算出する方法を示している⁵⁵。こ の実験手法は,金属材料用途として用いられて いる実験装置をそのまま用いることが可能であ るため,非常に高いガラス転移温度を有する材 料が取り扱えるなど,種々の利点がある。

本報では,著者らのグループにおいて開発された一軸圧縮クリープ試験によるガラスの熱粘 弾性特性同定手法について概略を述べるととも に,得られた熱粘弾性パラメータを用いたガラ スレンズのプレス成形シミュレーションの実例 について紹介する^{[6][7]}。

^{〒380-8553} 長野市若里 4-17-1 TEL 026-269-5161 FAX 026-269-5109 E-mail arai@shinshu-u.ac.jp

2. 粘弾性体の基礎理論

線形粘弾性体の応力 – ひずみ関係は,緩和弾 性係数を E(t),クリープ関数を J(t) として, 次式のような Duhamel のたたみ込み積分で定 義できる。

$$\sigma(t) = \int_{0}^{t} E(t-\tau) \frac{d}{d\tau} \varepsilon(\tau) d\tau + E(t) \varepsilon(0) \quad (1)$$

$$\varepsilon(t) = \int_{0}^{t} J(t-\tau) \frac{d}{d\tau} \sigma(\tau) d\tau + J(t) \sigma(0) \qquad (2)$$

ここで $\epsilon(t)$, $\sigma(t)$ は粘弾性体におけるひず みと応力の時間変動を表す。式(1),式(2)を Laplace 変換すると、以下の式を得る。

$$\overline{\sigma} = s\overline{E}(s)\overline{\epsilon}(s), \ \overline{\epsilon}(s) = s\overline{J}(s)\overline{\sigma}(s)$$
 (3)

ただし, 's'は Laplace 変換パラメータであ る。上の2式より応力とひずみを消去すると以 下の式を得る。

$$\overline{E}(s) = \frac{1}{s^2 \overline{J}(s)}$$
(4)

すなわち,実験によりクリープ関数J(t)が 得られれば,Laplace変換,逆変換を用いて緩 和弾性係数E(t)を算出できることがわかる。

さて,種々の粘弾性試験において得られる情報は,一般に縦弾性係数E(t)の緩和弾性係数 もしくはせん断弾性係数E(t)の緩和弾性係数 もしくはせん断弾性係数G(t)だけであって, すべての弾性係数が情報として得られるわけで はない。そこで,一般にはポアソン比を一定と するか,もしくは体積弾性率を一定とするか, いずれかの近似を適用する。著者らは既に,熱 粘弾性体において大変形が生じる場合にポアソ ン比を一定とした近似を行うと,成形体に極め て大きな体積変化が生じるといった矛盾が生じ ることを明らかにしている。⁵¹そこで,以下に おいては,体積弾性率は時間依存性を示さない ものとして定式化を行う。

体積弾性率の初期値, すなわち瞬間弾性率

 K_0 として定義される体積弾性率を,縦弾性係 数とポアソン比の瞬間弾性率をそれぞれ E_0 , v_0 とすれば,ステップ応答関数(緩和弾性率) として定義される体積弾性率 K(t)の Laplace 変換は以下のようになる。

$$\overline{\mathbf{K}}(\mathbf{s}) = \frac{1}{\mathbf{s}} \mathbf{K}_{0}, \left(\mathbf{K}_{0} = \frac{\mathbf{E}_{0}}{3(1-2\nu_{0})} \right)$$
(5)

ポアソン比は,Laplace 変換領域におけると $\overline{K}(s)\overline{E}(s)$ を用いて下のように従属的に定義される。

$$v(s) = \frac{3 \overline{K}(s) - \overline{E}(s)}{6 \overline{K}(s)}$$
(6)

一般に、体積変化の大きな固体材料の変形解 析においては、体積変化を近似的に0として取 り扱うが、実際に上式で定義されるポアソン比 は時刻無限大において $v_{\infty} = (3K_{\infty} - E_{\infty})/K_{\infty}$ と なり、時刻無限大における緩和弾性率 E_{∞} が十 分に小さくなるとすれば、 v_{∞} は0.5に近づ く。すなわち、時間の経過とともに変形が進ん だ場合には、ポアソン比が0.5、すなわち体積 不変の状態に近づくことが示されている。

3. 実験データを用いたクリープ関数の 計算法

以下,ガラス材料の熱粘弾性特性の測定に対 し,一軸圧縮クリープ試験を適用する場合につ いて述べる。特定の温度条件下のクリープ試験 により得られた試験片の変位履歴より,真ひず みの履歴を次式によって求める。

$$\varepsilon(t) = \ln \frac{L(t)}{L_0} \tag{7}$$

ここで L₀ は試験片の初期長さ(10 mm)で あり、L(t) は各時刻における試験片長である。 粘弾性体の変形に伴う体積変化は微小であるか ら、大変形時には体積変化が生じないものとみ なして、計算を簡略化する。この近似を用いる と、時刻における断面積は A(t) = A₀e^{-*}となる

図1 Maxwell Model.

から,結果的に試験片に作用する真応力の履歴 は次式のように見積もられる。

$$\sigma(t) = \frac{P}{A(t)} = \frac{P}{A_0} e^{\epsilon}$$
(8)

さて、たたみ込み積分の定義式(2)よりクリー プ関数を求めるために、ひずみ $\epsilon(t)$ 、応力 σ (t)クリープ関数J(t)を時間軸に対して等間隔 に離散化し、 ϵ_i 、 σ_i 、 J_i (i = 0,N)と定義する。 式(2)の時間微分に対して差分近似を適用する と、次式のようになる。

$$\mathbf{\epsilon}_{i} = \sum_{K=1}^{i} \mathbf{J}_{i-k} \left(\frac{\mathbf{\sigma}_{k} - \mathbf{\sigma}_{k-1}}{\Delta t} \right) \Delta t + \mathbf{J}_{i} \mathbf{\sigma}_{0}$$
(9)

最終的に、クリープ関数 J_i は次式により逐 次的に求められる。

$$\mathbf{J}_{i} = \frac{\mathbf{\varepsilon}_{i}}{\mathbf{\sigma}_{0}} - \sum_{K=1}^{i} \mathbf{J}_{i-k} \mathbf{\sigma}_{k} - \frac{\mathbf{\sigma}_{k-1}}{\mathbf{\sigma}_{0}}$$
(10)

次に,得られたクリープ関数J(t)より,緩 和弾性係数E(t)を求め,さらに Maxwell モデ ルを用いて緩和弾性係数をモデル化する方法に ついて示す。

まず,実験により測定されたクリープ関数 を,以下のようにべき級数和により近似する。 ただし,時刻0における値は誤差を含むため, 瞬間弾性率 E₀を用いて直接近似する。

表1 ガラス材料の BK - 7 の緒元

Instantaneous Young's Modulus (E ₀)	79.9[GPa]
Bulk Modulis (K_0)	45.76[GPa]
Poisson's Ratio (v ₀)	0.209
Young's Modulus of $t \rightarrow \infty$ (E_{∞})	1.783[MPa]
Density	2510[kg/m ³]
Glass Transition Temp. (T_g)	572[°C]

$$J(t) = \sum_{i=1}^{N} a_{i}t^{i} + \frac{1}{E_{0}}$$
(11)

上式を Laplace 変換したのち,式(4)に代入す れば,緩和弾性係数の Laplace 変換 $\overline{E}(s)$ が以 下のように求められる。

$$\overline{E}(s) = \frac{1}{s^2} \left(\sum_{i=1}^{N} a_i \frac{i!}{s^{i+1}} + \frac{1}{sE_0} \right)^{-1}$$
(12)

なお、一般の汎用有限要素法コードにおける 計算では、縦弾性係数E(t)ではなく、せん断 弾性率と体積弾性率の緩和弾性係数を入力する 必要がある。そこで、次式の関係式を用いて \overline{E} (s)、 $\overline{K}(s)$ からせん断緩和弾性係数の Laplace 変換 $\overline{G}(s)$ を計算する。

$$\overline{G}(s) = \frac{3 \overline{K}(s) \overline{E}(s)}{9 \overline{K}(s) - \overline{E}(s)}$$
(13)

上式に数値 Laplace 逆変換[®]を適用すること によって,最終的に実時間におけるせん断緩和 弾性係数 G(t)を得ることができる。

さて,汎用有限要素法コードにおける解析を 想定し,得られた緩和弾性係数のデータをさら に離散モデルにより近似することを考える。こ こでは,クリープ試験により求められた緩和弾 性係数を図1に示されるような¹¹自由度 Maxwell モデルを用いて近似する^[6,7,9]。モデルの 緩和弾性係数 κ(t) は次式により表される。

$$\kappa(t) = \sum_{i=1}^{5} \kappa_{i} \exp\left(\frac{-t}{\lambda_{i}}\right) + \kappa_{\infty} \left(\lambda_{i} = \eta_{i}/\kappa_{i}\right) \quad (14)$$

ここで κ₁, κ₂, ..., κ₅ および η₁, η₂, ..., η₅ は Maxwell モデルの各要素に対応する係数 である。また, κ_∞は無限時間経過後の弾性率

図2 BK-7 のせん断緩和弾性係数G(t)とシフトファクター

表 2 Maxwell モデルの諸係数 (緩和弾性係数:G(t))

k_1	0.2475[GPa]	λ_1	4.10 [ms]
k_2	8.178[GPa]	λ_2	4.11 [ms]
k_3	8.178[GPa]	λ_2	4.11 [ms]
k_4	8.178[GPa]	λ_2	4.12 [ms]
k_5	0.0412[GPa]	λ_2	4.12 [ms]
k_{∞}	0.857[MPa](=	$= G_{\infty}$)

をそれぞれ表す。これらの未知パラメータは, 探索計算により求めることができるが,本論文 では探索次元を減じるため,弾性定数 κ_1 , κ_2 ,..., κ_5 は既知量として与え, λ_1 , λ_2 ,..., λ_5 のみを未知パラメータとして探索 を行った。

以下, ガラス材料 BK-7 の緩和弾性率を上記 の手順により求めた結果について示す。BK-7 の瞬間弾性率, 密度等の値は表1に示すとおり である。図2(左)は先に述べた手順に従って クリープ試験の結果から BK-7 のせん断緩和弾 性率を求めた結果であり,550℃から590℃ま での5通りの温度環境における結果を示してい る。各温度の緩和弾性率は,対数時間軸上にて ほぼ同じ形であり,対数時間軸方向に平行移動 することにより一本の曲線(マスターカーブ) に重ね合わせることが可能である。

基準温度 570℃ における緩和弾性率のグラフ をマスターカーブとし、マスターカーブに対す る平行移動量,すなわちシフトファクターを求 めて整理した結果が図2(右)である。シフト ファクターの値は,横軸を温度の逆数とした場 合にほぼ直線的に並んでいる。すなわち,次式 で示されるような,粘性流動の活性化エネル ギーを用いたシフトファクターα_{T0}(T)の近 似(Narayanaswamyの近似式)が成立する。

$$\ln \alpha_{\rm T0}(T) = \Delta HR \left(\frac{1}{T_0} - \frac{1}{T}\right) \tag{15}$$

ここで, ΔH [kJ/mol] は活性化エネルギー, R は 気 体 定 数 (=8.31×10⁻³[kJ/(mol・ K)]), T₀[K]は基準温度である。

4. 有限要素法によるレンズプレス成形 解析

ここでは,得られた熱粘弾性特性を用いて図 3 (左) に示されるような非球面レンズの成形 プロセスについて,汎用有限要素法コード ANSYS ver.10.0を用いて解析を行った結果 を示す。解析に用いた温度・圧力条件を図3 (右)に示す。成形温度を700℃とし,金型(超 硬),ガラス材 (BK-7)ともに成形温度に保持 した状態において,金型の上面に3 MPaの成 形圧力を一様に与え,約15秒間保持する。そ の後,一定の温度勾配にてt2秒間 (150,300,600秒)にて室温まで冷却するプロ セスである。なお,冷却シーケンスにおいて

図3 非球面レンズのプレス成形モデル (左),成形シーケンス (右)

図4 残留応力(Mises 相当応力)の解析結果,t₂=150 s(左),t₂=600 s(右)

図5 各成形条件による成形後のレンズ形状の比較

は,金型上面に1 MPa の補圧を与えた。最後 に室温状態において約15秒間保持し,レンズ 内部の温度分布が一様となった時点で成形終了 とする。なお,今回の計算においてはレンズと 金型との熱移動に関しては簡易的に取り扱うこ ととし,レンズ部分のみに対して非定常熱伝導 解析を適用した。すなわち,解析の温度シーケ ンスをレンズ外周に与えて非定常熱伝導解析を 行い,その結果得られた温度分布を条件として 構造解析を実施した。解析において,BK-7の 比熱は858[J/(kg·K)],熱伝導率は1.11[W/ (m·K)]とした。また,BK-7の線膨張係数は, 熱分析装置により得られたデータをもとに,以 下に示されるような4次のべき関数により近似 した。

$$a(T) = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4$$
(16)

ただし、 $a_0 = 6.0 \times 10^{-6}$, $a_1 = 2.25 \times 10^{-8}$, $a_2 = 5.34 \times 10^{-12}$, $a_3 = -3.68 \times 10^{-13}$, $a_4 = -5.85 \times 10^{-16}$ である。

図4は、成形終了後に試験片内部に生じた残 留応力(Mises 相当応力)の解析結果である。 冷却時間を長く設定することにより、残留応力 の最大値は1.43 MPaから0.43 MPaへと減じ られることが確かめられる。これらの結果に示 されているように、残留応力の値は成形前後の 温度差のみならず、冷却速度に大きく依存する ため、熱粘弾性パラメータの同定精度が残留応 力の解析精度に大きく影響を及ぼすこととな る。

図5は、成形終了後のレンズ形状の成形誤差 (金型形状との相対誤差)を示したものであり、 グラフの横軸はレンズ中心軸上からの距離を示 している。レンズの外周部(2.0 mm)にて約 1µmの成形誤差が生じているが、先程の残留 応力の解析結果と同様に、冷却時間が長くなる ほど成形精度が向上していることが確かめられ る。

5. むすび

本報では、一軸圧縮クリープ試験の結果を用 いて熱粘弾性特性を示すガラス材料の緩和弾性 係数を算出する一連の手法について紹介すると ともに、ガラスレンズのモールドプレス成形シ ミュレーションについて例題解析の一例を示し た。

対象材料の構成方程式が,線形熱粘弾性理論 で近似し得る範囲内の挙動を示す場合には,ガ ラスに限らず樹脂や樹脂基複合材料の成形解析 などに対しても本報で紹介した手法を適用する ことが可能である。ただし,線形近似の範囲を 越えて粘塑性的な挙動を示す材料に対しては, 内部状態変数を用いた構成関係を導入するなど の取り扱いが必要になろう。

また,実際の成形においては金型と試料の接 触界面において熱伝導が生じるため,金型とガ ラス試料間の熱移動に関しては,さらに複雑な 議論が必要となる。金型内の雰囲気に対する熱 移動や熱ふく射,さらには金型と試料との摩擦 の影響などの諸条件を考慮に入れた解析を行う ことによって,ガラスのモールドプレス成形の 最適条件の予測が,さらに高い精度で可能にな るものと期待される。

文献

- (1) 梅谷誠:プレス成形によるガラスレンズの作成, NEW GLASS, Vol. 13, No. 2, (1998), pp. 32—37.
- (2) 村上謙吉:レオロジー基礎論,(1991),産業図書, pp.151—170.
- (3) 藤川正毅,隆雅久,青山大輔,三原康子,小林卓 哉:定ひずみ速度試験による線形粘弾性特性係数関 数決定法,実験力学,Vol.4,No.4,(2004),pp.53-58.
- (4) 三上貴央,藤川正毅,隆雅久,三原康子,小林卓 哉:応力緩和試験による線形粘弾性特性係数関数決 定法,日本実験力学会講演論文集,No.6,(2006), pp.347—351.
- (5) 辰己正和,荒井政大,筒井喜平: 圧縮クリープ試験を用いた緩和弾性係数の同定法について,日本計算数理工学論文集, Vol. 6, No. 2, (2006), pp. 137-142.
- (6) 荒井政大,山本和也,中村淳之介,伊藤寛明,松 倉利顕,杉本公一:有限要素法によるガラスレンズ のプレス成形シミュレーション,日本機械学会論文 集(A), Vo. 72, No. 717, (2006), pp. 683—690.
- (7) 荒井政大,中村淳之介,辰己正和,伊藤寛明,松 倉利顕,杉本公一:温度場の不均一性を考慮したガ ラスレンズのモールドプレス解析,日本計算数理工学 論文集, Vol. 5, No. 2, (2005), pp. 177—182.
- (8) 細野敏夫:数値ラプラス変換,電気学会論文集, Vol. 99, No. 10, (1979), pp. 44—50.
- (9) Collocation 法を基にした線形粘弾性マクスウェル モデルの Prony 級数近似法:
- 藤川正毅,隆雅久,実験力学, Vol. 3, No. 4, (2003), pp. 60—66.