局所原子構造及び熱力学的状態量として捉える ガラス構造

旭硝子 (株) 中央研究所

高田 章

Glass structure investigated in terms of changes of local atomic configuration and thermodynamic state variable

Akira Takada

Research Center, Asahi Glass Co., Ltd.

1. はじめに

ガラスと呼ばれる状態は原子配置については 並進対称性を持たない不規則構造であると言わ れ,熱力学的観点からは液体状態が凍結した非 平衡な状態であると言われている。長いガラス 研究の歴史の中で多くの優秀な理論家及び実験 家が解明を目指して研究が続けられてきた課題 であるだけに理論及び実験だけで簡単に解明で きそうには考えられていない。一方理論・実験 に比べると,コンピュータシミュレーションの 歴史はまだ浅く,実現象のすべてを再現できる レベルには無いものの,原子配置については理 論式で表現できない不規則な場合であっても3 次元の実空間の原子配置として解析することが できるし,熱力学的状態量は妥当な計算式を決 めることさえできれば原理的にはその式の時間

〒221-8755 神奈川県横浜市神奈川区羽沢町 1150 TEL 045-374-7304 FAX 045-374-8856 E-mail: akira-takada@agc.co.jp

発展を計算していくことも可能である[1,2]。 実際にガラスを作る現場では同じガラスを作っ ているつもりであるのに特性が大きく変わった り、均質なガラスが得られれば優れた特性を示 すことが期待されるのに結晶化したり相分離し たりして、狙った通りのガラスとならないこと が時々起ってしまう。このようなネガティヴな 問題もそのメカニズムが解明されれば、今まで 想像もしなかったガラス構造あるいはガラス状 態を発見するというポジティヴな創造につなが る可能性もある。筆者はコンピュータシミュ レーションを武器にガラス構造・ガラス状態の 解明を進めることによって新しいガラスの開発 に少しでも貢献できないものかと研究を進めて いる。本報告ではガラスのプロト材料であるシ リカガラスを例として,非晶質構造・非平衡状 態を記述するオーダーパラメータに関する筆者 の最近の研究成果を紹介する。

シミュレーションによる幾何学的解 析手法

ガラスの空間構造を解析するに当たって動径 分布関数,結合距離,結合角度,配位数を調べ ることは実験・コンピュータシミュレーション に共通して利用される古くからある常套手段と なっている [3]。さらに最近では Qn (シリカ ガラスの場合にはnはSiに結合している架橋 酸素数を表す)の分布あるいはリングサイズ(シ リカガラスの場合には Si-O 環を構成している Siの数)の分布も頻繁に利用されるようにな ってきている。これらの情報を利用して実験と コンピュータシミュレーションの両方から矛盾 なく再現できる構造モデルが最も確からしいと 言えるが、シリカガラスのように1成分の酸化 物についてさえ温度変化・圧力変化でどのよう に構造が変わったかを理解しようとすると十分 な情報とは言えない。ガラスの構造は対応する 系の結晶が参考になると言われている。SiO₂ の結晶相図を見てわかることは同じ4配位でも 異なる複数の構造が異なる温度域で安定になる こと, 高圧側には4配位と6配位の構造が存在 することである。温度によって引き起こされる 結晶構造の変化は quartz の α-B 転移, cristobalite の α-β 転移のような結合交替を伴わな い変化と、quartz, tridymite, cristobalite間 で起こる結合交替を伴う変化がある。結晶構造 の変化だけでも十分複雑と言わざるを得ない。 回折実験等のデータ解析及び分子動力学法計算 により、ガラスの構造は微結晶の集まりという よりは random network model に近いもので あるという考えが主流になっているが、全くラ ンダムという訳でもなく,結合長,結合角,リ ングサイズは結晶で観測される値をほぼ中心値 とするブロードな分布を持っている。そういう 点ではある種の秩序が存在していると言える。

ところでシリカガラスは単純な組成にも関わ らず、(1)液体状態で温度上昇に伴い密度最大と なる温度が存在しそうなこと、(2)体積弾性率が 温度とともに増加し増加率の変わる温度がある こと、(3) 圧密化すること、(4) 体積弾性率が圧力 とともにある圧力領域で減少すること。(4)高圧 の液体状態で圧力増加とともに粘性が極小を示 しそうなこと、といった通常の材料には見られ ない特異な性質を示すことが知られている [4]。高温·高圧の in-situ の実験が難しいた めに, 密度最大及び粘性極小の存在はシミュ レーションが強くサポートして状況になってい る。構造を記述できるオーダーパラメータが一 つだけで十分であれば環境の変化により性質は 単調な増加あるいは単調な減少を示すはずなの で、これらの特異な性質を説明するためには複 数のオーダーパラメータが必要であるとも言え る。最初に体積弾性率の温度依存性の特異な性 質を説明する構造モデルは Deeg. Vukcevich [5] らによる定性的な「2構造モデル」で、そ の後は Kieffer らのグループ [6,7] による $\lceil \alpha \rceil$ -B 転移モデル」によりかなり定量的にも説明 できるようになってきた。Kieffer らのグルー プのモデルは, quartz あるいは cristobalite 結 晶中で観測される α-β 転移の起源である,隣 り合う4面体(SiO₄)間のねじれ角の動的な変 動がガラス中の局所構造の中でも起こっている ことを分子動力学法シミュレーションで示し. 実験で観測されている体積弾性率の変化をほぼ 再現することに成功している。

筆者らはこのモデルだけでは液体状態で観測 される密度最大あるいは実験で観測されている シリカガラスの液体状態の粘っこさを説明する ことが難しいので、 α - β 転移の起源となる2 つの固体状態局所構造単位の他に、4面体 (SiO₄)間の再結合状態、4面体(SiO₄)の非架 橋状態を表す2つの液体状態局所構造単位も加 えて、4つの'structon'(図1)という構造単 位で温度異常をすべて説明できるモデルを提案 してきた [8,9]。GeO₂ガラス、BeF₂ガラスも 統一的に扱うことができる [10]。'structon model'の考え方と応用については既報を参照 いただきたい [8-10]。

圧力効果の異常については、Siが4配位か ら5配位,6配位に変化するため4面体(SiO₄) をベースとした 'structon model' だけで説明 することはできない。高圧下での配位数あるい はリングサイズの違いを解析する研究は行われ てきているが、結晶の高圧相、特に4配位の coesite との対応はほとんど議論されて来なか った。一方、アモルファスの構造を表すモデル とはしては以前よりrandom packing of sphere という概念 [11] があるが、単一粒子 (原子)をランダムに充填するというモデルで あったため酸化物ガラスのような複数の原子種 が共存する構造には応用が難しかった。しかし ながら最近では、まず一つの共通した母構造 (BCC)を定義しておき、その後特定のサイ トだけ占有するようにすると、その占有の仕方 に対応して各種のシリカ結晶が表現できるとい う論文が発表された[12]。筆者はこの概念を 不規則なガラス構造に拡張することを考えた。 まずシリカ結晶・ガラスともにケイ素 (Si) は 見ないで酸素(0)の充填のみを考える。酸素 (O)の最密充填構造は結晶 stishovite となる 構造を母構造と考え、その他の SiO₂ 結晶、ガ ラス構造は最密充填構造に比べて酸素欠陥があ る構造であるという考え方を取る。さらに局所 酸素充填数(Local Oxygen Packing Number: LOPN) という新しい指標の導入により,不規則系の構 造の違いが議論できるようになった[13]。今 までのガラスの構造理論はカチオン (Si) 周り

の配位数を主体とした考え方であるのに比べ て、筆者の考え方はアニノン(0)の充填数を 考えてみようというアイデアである。なぜこの ような考え方をしたかについて簡単に説明した い。従来の配位数の考え方は荷重を増加させた 場合の構造変化-Siが4配位から5配位,6配 位に変化する様子-は見事に表現できるが. 圧 密化-10 GPa 以上の加重後に除荷した場合に 高密度の同じ4配位だが異なるガラス構造が得 られる状態-の構造についての説明は難しかっ た。筆者らは分子動力学法シミュレーションで 得られる大気圧下の構造、荷重状態(20~30 GPa)の構造及び除荷後の原子構造について LOPN を計算してみたところ、大気圧下の構 造は quartz 及び cristobalite 構造で見られる LOPN=6を中心とした分布を持っているが、 荷重状態 (20~30 GPa) では LOPN = 11~12 と 増加し stishovite 構造の最密充填構造に近づ き、除荷後は coesite で見られる LOPN = 6.5 に近い平均 LOPN=7の構造であることがわか った(図2)[13]。実測密度から計算される, 空間全体を平均した充填密度という概念は古く からあるが、原子構造を局所的に見た場合、ど こでも連続的に構造が変わるという解釈より は、一つの局所構造から別の局所構造へ場所ご とに異なるタイミングでクロスオーバーして変 化していくという解釈の方がシミュレーション 結果をよく説明できる。別の言い方をすると. シリカ結晶、ガラスともに、低密度と高密度の Si4 配位構造が存在し圧力とともに逐次乗り移 っていくということになる。もちろん変化しな いで元の構造単位が残る部分も存在している。

3. シミュレーションのよる熱力学的手法

幾何学的手法が実空間の原子配置の秩序を解 析する手法とすると,これから説明する熱力学 的手法はエネルギー空間における構造の秩序を 解析する手法と分類される。

シリカガラスの場合,温度履歴の異なるガラ ス構造の違いを議論するために,オーダーパラ

(b) 除荷時のLOPNの分布

図2 シリカガラスの局所 酸素充填数(LOPN)の変化

メータとして密度あるいは仮想温度が利用され てきた。特に最近では仮想温度は工業的にも有 用な手法として広く利用されている[14]。一 方,熱力学の教科書にも出てくる Prigogine-Defay Ratio を種々のガラスについて計算して みると構造の違いを説明するためには複数の オーダーパラメータが必要であるという議論も 行われてきた。非平衡状態については熱力学. 統計力学とも完成された理論がまだ構築されて いないため、ガラスのような非平衡状態を完璧 な理論で記述していくことはまだまだ時間がか かりそうである。筆者は溶液化学分野で溶媒-溶質の相互作用を分子サイト間のエネルギー分 布として表示するという論文[15]にヒントを 得て、ガラスのような場合にはさらに原子レベ ルまで拡張して解析する新しい手法(個々の原 子に割り振られたエネルギーは 'Atomistic En-

図3 Atomistic energy distribution functionsの1 次,2次モーメントの変化プロフィール(クリ ストバライトの溶融時,徐冷時,瞬間固化され たシリカの3サンプル)

ergy'と名付け、その分布('Atomistic Energy Distribution: AED) 及びその変動を解析する 手法)を開発してきた [16]。 筆者らの独自の アイデアとしてさらに追加したのは、得られた エネルギー分布をモーメント解析したお陰で. 分布形状ではなく、数値として構造の違いを議 論できるようになった。モーメント解析は統計 的手法で,分布形状について1次のモーメント は平均値,2次のモーメントは分散を表す。構 造が異なれば AED 分布が異なり、高次まで計 算したモーメントのどこかが異なる値となる。 シリカガラスについては1次と2次のモーメン トの組み合わせで温度変化、圧力変化によるガ ラス・液体構造の違いが識別できることがわか った(図3)。ここで1次のモーメント(横軸) はエネルギーの安定・不安定,2次モーメント (縦軸) はエントロピーの大小 (構造の乱れ具 合の指標)に対応しているという点で物理的・ 化学的な意味付けができることは興味深い。紙 面の都合で. AED 解析手法の詳細. 温度効果 [16]. 圧力効果 [17] は既報を参照いただきた 61

今後の課題と展望

本報では筆者らの分子シミュレーション手法 をベースとした最近の新しい構造解析手法に限

って説明してきた。ボロノイ多面体解析[18]. bond-orientational order [19] 等の別の有用 な方法もある。現在のところ、ガラスの複雑な 構造をすべて説明できる単一の理論・モデルが 無い以上は,当面は種々の手法に精通し,解決 したい問題ごとに組み合わせて適用していくア プローチが現実的なアプローチであろう。その 一方で物理、化学、数学を組み合わせた高度な 理論はますますガラス研究に適用されていくだ ろう。幾何学的解析手法についてはシリカガラ スのような単一酸化物系の構造についてはうま く説明できるが、多成分系へ拡張するためには さらに別のアイデアが期待される。また多成分 系を扱うと相分離の問題が新たに生じるが、そ のような相分離構造をどのように扱っていくか は研究面で一歩先を行く高分子物理分野が参考 になるであろう。熱力学的手法の方は近年2回 (2008年、2009年)のエントロピー・ワークシ ョップが開催され活発に議論されている分野で もある。ただし基本的な問題の一つである残留 エントロピーに対するコンセンサスもできてい ない状況なので、熱力学・統計力学を融合した 新しいプローチで非平衡状態を記述する研究の 進展が期待されている。工業的には融液の均質 性、成形性を支配する粘弾性、熱処理後の緩和 現象等の重要な問題を解決する糸口になるた め、今まで以上に実験家とシミュレーション技 術者の協力関係が重要になっていくものと思わ れる。

参考文献

- P. H. Poole, P. F. McMillan, G. H. Wolf, Computer simulations of silicate mlelts, Reviews in Mineralogy 32 (1995) 563-616.
- [2] A. Takada, A. N. Cormack, Computer simulation models of glass structure, Eur. J. Glass Sci. Technol. B 49 (2008) 127-135.
- [3] 例えば, J. E. Shelby, 'Introduction to Glass Science and Technology, 2 nd edition, Chapter. 5 (2005) The Royal Society of Chemistry, Cambridge, UK.
- [4] R. Brueckner, properties and structure of vitreous silica, J. Non-Cryst. Solids 5 (1970) 123-175.

- [5] M. R. Vukchevich, A new interpretation of the anomalous properties of vitreous silica, J. Non– Cryst. Solids 11 (1972) 25-63.
- [6] L. Huang, L. Duffrene, J. Kieffer, Structural transitions in silica glass: thermo-mechanical anomalies and polyamorphism, J. Non-Cryst. Solids 349 (2004) 1-9.
- [7] L. Huang, J. Kieffer, Amorphous-amorphous transitions in silica glass, Phys. Rev. B 69 (2004) 22403.
- [8] A. Takada, P. Richet, C. R. A. Catlow, G. D. Price, Molecular dynamics simulations of vitreous silica structures, J. Non-Cryst. Solids 345&346 (2004) 224 – 229.
- [9] A. Takada, P. Richet, C. R. A. Catlow, G. D. Price, A molecular dynamics simulation of complex structural changes in amorphous silica at high temperatures, Eur. J. Glass Sci. Technol. B 48 (2007) 182 – 187.
- [10] A. Takada, P. Richet, C. R. A. Catlow, G. D., Molecular dynamics simulation of temperature-induced structural changes in cristobalite, coesite and amorphous silica, J. Non-Cryst. Solids 354 (2008) 181 – 187.
- [11] J. L. Finney, Random packings and the structure of simple liquids, proc. Roy. Soc. Lond. A 319 (1970) 479-493.
- $\begin{bmatrix} 12 \end{bmatrix} V. Dmitriev, V. Torgashev, P. Toledano, E. K. H. Salje, Theory of SiO_2 polymorphs, Europhys. Lett. 37 (1997) 553-558.$
- [13] A. Takada, new geometrical modelling of B_2O_3 and SiO_2 glass, Eur. J. Glass Sci. Technol. B 50 (2009) 219-223.
- [14] 例えば, A. Argawala, K. M. Davis, M. Tomozawa, A simple IR spectroscopic method for determining fictive temperature of silica glasses, J. Non-Cryst. Solids 185 (1995) 191-198.
- [15] N. Matsubayashi, N. Nakahara, Theory of solutions in the energetic representation, J. Chem. Phys. 113 (2000) 6070-6081.
- [16] A. Takada, P. Richet, T. Atake, new description of structural disorder in silica glass, J. Non-Cryst. Solids 355 (2009) 694-699.
- [17] A. Takada, P. Richet, T. Atake, new description of structural disorder in silica glass. II. Application of atomistic energy distribution analysis to pressure effects, J. Non-Cryst. Solids (2010), doi : 10.1016 / j. jnoncrysol. 2010. 02. 009.
- [18] M. Tanemira, Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita, A. Ueda, Geometrical analysis of crystallization of the soft-core model, Prog. Theor. Phys. 58

(1977) 1079 - 1095.

 [19] P. J. Steinhardt, D. R. Nelson, M. Ronchetti, Bond -orientational order in liquids and glass, Phys. Rev. B 28 (1983) 784 – 805.

