第一原理分子動力学計算によるガラスの研究

千葉大学大学院 工学研究院

大窪 貴洋

Ab initio molecular dynamics study of glasses

Takahiro Ohkubo

Graduate school of Engineering, applied Chemistry and Biotechnology, Graduate school, Chiba university

1. はじめに

分子動力学計算(MD)をガラスに適用する 試みは,MD計算がスタートした初期から行わ れており,その精度や適用範囲が現在も研究さ れている。MD計算は,原子間のポテンシャル から原子に働く力を計算し,有限の温度下で原 子の動きをニュートン方程式に従ってシミュ レーションする技法である。原子に働く力を計 算するためのポテンシャルは,一般に原子間距 離の陽な関数として与えられる。このようなポ テンシャルは,原子核-電子や電子-電子相互 作用を取り込んで,構造等の実験値や第一原理 計算で得られる力とエネルギーを再現するよう 決められる。しかし,硫黄のように複数の酸化 状態をもつ原子を扱う場合,原子間ポテンシャ

〒 263-8522

千葉市稲毛区弥生町 1-33 TEL 043-290-3435 FAX 043-290-3435 E-mail: ohkubo.takahiro@faculty.chiba-u.jp ルを原子間距離だけの関数で表現することは. 物理的に無理がある。また、多数の原子からな るガラス材料の分子動力学計算を行う場合, n 原子種でn(n+1)/2のポテンシャル関数を開発 せねばならず,多成分系ガラスを分子動力学で 取り扱うことが難しい。一方、第一原理計算よ り得られた波動関数から原子間に働く力を計算 し. MD 計算を行うことを第一原理分子動力学 計算(AIMD)と呼ぶ。現在,材料に適用され ている AIMD 計算の多くは、計算コストの観点 から時間に依存しない定常状態で第一原理計算 で力を計算し、ニュートン方程式に従って原子 の動きをシミュレーションする (ボルン-オッ ペンハイマー近似)。また価電子だけを陽に扱 い、内殻電子は場として与えることで計算コス トを減らす(擬ポテンシャル法)。このような近 似に関わらず、AIMD で得られた原子構造は実 験データを良く再現する。第一原理計算は、構 成方程式を最小化問題に置き換えて繰り返し計 算で方程式を解くため、古典 MD と比較して高 い計算コストを要求する。しかし、原子に働く

力を精密に表現することができ、原子間のポテ ンシャル関数を開発する手間もないため、その 応用範囲は広い。本稿では、これまで古典 MD で構造の再現が難しかった多成分系酸化物ガラ スと硫化物ガラスの AIMD 計算について紹介 する。

アルミノボロシリケートガラスの AIMD 計算例[1]

放射性廃棄物ガラスのように実用ガラスの多 くは多成分系である。多くの古典 MD で用いら れるポテンシャル関数は、単純な酸化物やガラ スの実験データを再現するよう決定されてい る。そのため、ポテンシャル関数の精度等を考 慮すると、多成分系ガラスの古典 MD は躊躇せ ざるを得ないが、AIMD では問題なく行える。 この研究では、409 原子からなる溶融 82SiO₂ 18.5B₂O₃-5Al₂O₃-27Na₂O ガラスを古典 MD で作 成し、引き続き AIMD 計算を行った。溶融状態 から 16.25 K/ps の冷却速度で室温まで冷却し ガラス構造を得た。AIMD で得られたガラス構

図1 中性子回折実験と古典 MD および AIMD 計算でから求めた干渉関数(構造因子 S(Q)から1を引いてQをかけたもの)。古典 MD は入手できる2つのポテンシャル関数を用いて計算した。実験との 偏差は13.2 (AIMD), 40.9 (ref1[2]),49.2 (ref2[3])で AIMD の結果がもっともよく干渉関数を再現している。

造と中性子回折実験で得られた干渉関数((S (Q)-1)Q)を図1に示す。参考として,報告さ れているポテンシャル[2-3]を使って古典 MD より作成したガラス構造で計算した干渉関数も 図1に示す。図1からわかるように AIMD で得 られた干渉関数の再現性は,古典 MD より向上 している。

さらに AIMD で得られた構造で GIPAW [4] 計算を行い¹⁷O の等方ケミカルシフトと四極子 結合係数を計算し,実験データと比較した(図 2)。実験データは,¹⁷O 3QMAS NMR 実験から 求めた結果で,等方ケミカルシフトと四極子結 合係数の相関を等高線で示している。得られた 等方ケミカルシフトと四極子結合係数は,結合 カチオン種毎にマーカーを変えて示している。 多成分系の NMR スペクトルは,ユニークな原 子構造が増えてピークが多く出現し,帰属が難 しくなるが,AIMD 計算に基づいた NMR 計算 を行うことで詳細な帰属が可能になる。¹⁷O 3QMAS NMR の実験データより,この組成で は非架橋酸素が存在していないが,AIMD 計算

図2¹⁷O 3QMAS NMR スペクトルから求めた等方ケ ミカルシフトと四極子結合定数の相関マップ(コン ター)。AIMD で得た構造から GIPAW 計算で求めた結 果は,酸素種毎にユニークなマーカーで示している。

でも同様に酸素は全て架橋酸素であった。

原子間距離に基づいてガラス中の単位構造の 割合を求めたところ.²⁹Si NMR や¹¹B NMR の 結果をよく再現した。その一方、実材料では 0.1% 程度しか存在しない5 配位した Siのよう な欠陥構造が AIMD では 1% 程度存在する。こ の理由は、AIMD 計算で溶融状態からガラス構 造を得る時、極めて速い冷却速度を用いるため である。このように AIMD では. 計算コストと の兼ね合いにより実ガラスよりも、欠陥構造を 多数含むガラスを生じてしまうが. 実験的に解 析しにくい、欠陥構造について知見を得ること ができる。例えば. O が 5 配位した Si の O-Si-O 結合角分布は、90.120および175°にピークを 示しており, 三方両錐形な配位構造を予想させ る。このような欠陥構造を古典 MD で正しく計 算することは難しく、また実験的にも解析する 手段がないため、AIMD 計算のみで得られる貴 重な構造データと考えられる。

3. 硫化物ガラスの AIMD の計算例 [6]

硫化物ガラスも古典 MD 計算で再現するこ とが難しい材料である。その理由は、様々な酸 化状態をとる P と S からなる構造ユニットが 存在するためである。硫化物ガラスの古典 MD 計算のためにポテンシャル関数が開発されてい る [5] が. 筆者が確認した限り. 結合角等で構 诰が再現できず、汎用的に使えるものではな かった。硫化物ガラスの AIMD 計算は, 208 原 子からなる 70Li_sS-30P₅S₅ ガラスを対象とした。 この組成で、ガラスの構造ユニットは、10PS³、 8P₂S₇⁴ および 2P₂S₆³ になることが ³¹P NMR や ラマンスペクトルから報告されている「7]。一 般的なガラスのシミュレーションで行うよう に、組成原子をランダムに配置して高温でア ニーリングした場合.S-SやP-P等の結合が生 成され、実験的に報告されている構造を再現で きなかった。そこで、適当な分子ポテンシャル を用いて PS₄³, P₂S₇⁴ および P₂S₆³ をランダムに 配置し. 古典 MD でアニーリングしすることで 初期構造を作成し AIMD 計算にスイッチした。 AIMD の平衡計算後に得られた構造から計算 した構造因子を実測データ[6]と合わせて図3 に示す。2 Å⁻¹ 以下のプレピークも含めて. 実測 データを良く再現しており. 高い精度で構造を シミュレーションできた。硫化物ガラスの AIMD から得られた興味深い現象として、同組 成のLi₂P₂S₁₁結晶で観測されない PS³ユニッ トの回転運動がある。硫化物ガラス中では室温 にも関わらず 100 ns 程度の周期で PS³ ユニッ

トが回転運動しており,ガラス構造の自由度か ら生じる特異な運動と考えられる。

4. おわりに

本稿では紙面の都合上, AIMD 計算から得ら れる構造に着目して解説した。高輝度 X 線や中 性子 回折実験, NMR 実験から得られる構造 データを AIMD 計算はよく再現するが, 計算コ ストから生じる原子数(数百原子程度)と計算 ステップ(100,000 ステップ程度)の制限を受け る。しかし,他のシミュレーション技法と比較 して,比較的高い精度でガラス構造を再現でき ることから,計算理論やハードウェアの進展に 伴って,ガラス構造の解析手法として確立して いくと考えられる。本稿では割愛した AIMD で 得られる電子構造やダイナミクスも AIMD で らではの解析である。今後,イオンや電子の特 性を巧みに利用する機能性ガラスに AIMD が ますます適用されていくと考えられる。

参考文献

- T. Ohkubo, T. Tsuchida, K. Deguchi, et al., J. Am. Ceram. Soc., 101, 1-13 (2018)
- [2] J-M. Delaye, D. Ghaleb, Phys. Rev. B, 71, 224204-224213 (2005)
- [3] L. Deng, J. Du, J. Non-Cryst. Solids, 453, 177-194 (2016)
- [4] M. Profeta, F. Mauri, C.J. Pickard, J. Am. Chem. Soc., 125, 541-548 (2003)
- [5] R.K. Sistla, K. Ramesh, M. Seshasayee, J. Noncrystalline Solids, 349, 54-59 (2004)
- [6] T. Ohkubo, K. Ohara, E. Tsuchida, J. Phys. Chem. C, submited
- [7] K. Ohara, A. Mitsui, M. Mori et al., Sci. Rep., 6, 21302-21311 (2016)