パーシステントホモロジーによる材料科学データ解析

理化学研究所革新知能統合研究センター

大林 一平

Materials data analysis using persistent homology

Ippei Obayashi Center for Advanced Intelligence Project, RIKEN

1. はじめに

本稿ではデータの幾何的特徴の抽出と定量化 に役立つ,パーシステントホモロジー(PH)と いう手法[1]について紹介したい。PHは数学 のトポロジーという概念にもとづく位相的デー タ解析[2][3]の一手法で,連結性,穴、リン グ,空隙,といった構造を用いてデータの形を マルチスケールに特徴付ける。

本稿では以下のような疑問に答えることを目 標とする。

- PH はどのようにしてデータの幾何的特徴を 抽出し定量化するのか?
- ●この手法の材料科学データ解析への適用例は?
- PH は自分の持っているデータの解析に有用

〒 606-8501

京都府京都市左京区吉田本町京都大学情報学研究科 人工知能研究ユニット TEL 075-753-5073 E-mail: ippei.obayashi@riken.jp そうか?

- PH はどのようなデータの解析が得意か?
- PH によるデータ解析ツールはどのようなも のがあるか?

そこで本稿では以下のような構成で PH につ いて紹介する。まずは PH の材料科学への適用 例について筆者が関連してきたものを中心に紹 介する。特にデータの種類について注目して紹 介する。2節では PH の理論的基礎について解 説する。3節では2つの活用事例についてより 詳しく解説する。これらの事例により PH によ る実際的な材料データ解析について知ることが できるだろう。4節では筆者の大林が中心と なって 開発している データ 解析 ツール 「HomCloud」について紹介し、5節は PH によ る材料データ解析において直面するいくつかの 課題について検討する。最後に6節で本稿のま とめとする。

1.1 PH による材料科学データ解析の事例

PH によるデータ解析の事例として代表的な

NEW GLASS Vol. 35 No. 129 2020

ものとしてはガラス(アモルファス)の原子レ ベルでの構造解析 [4] [5] [6] [7] が挙げられ る。これらの研究では基本的に分子動力学 (MD)シミュレーションや逆モンテカルロ法な どによって計算された原子配置データを用いて いる。

論文 [8] では粉体の秩序 – 無秩序転移につい て解析している。この研究では基本的には粒状 のビーズを容器に詰め込み X 線 CT で計測し た空間データを用いている。粉体モデルの数値 シミュレーションの結果も PH で解析し,2つ の PH 解析結果の整合性も調べている。

論文 [9] ではガラス質ポリマーの変形による ひびの発生とその成長について解析している。 こちらの研究では粗視化 MD によってデータ を得ている。

材料科学というよりは生化学の研究である が,論文[10]ではタンパク質の構造からの分 類問題を取り扱っている。X線結晶構造解析で 得た原子レベルでの構造を入力データとし,機 械学習手法も併用して問題に挑んでいる。[11] も同様にタンパク質の構造をPHと機械学習で 解析している。

画像データへの適用事例もある。焼結鉱の X 線 CT 画像の解析 [12] やカー顕微鏡で計測し た磁気材料の磁区構造 [13] などの事例が挙げ られる。

以上のように,様々な材料のデータ解析に PHが用いられている。2次元3次元の構造の解 析に主に活用されている。ガラスや粉体の転移 現象に利用されているように,結晶のような強 い秩序を持つ構造の解析よりは乱れた構造の解 析に大きな力を発揮する。

本稿では3節で論文[4]と[9]の研究につ いてより詳しく紹介する。また論文[6][7]な どの研究は本特集の別の論文によってより詳し く解説されているのでそちらも参考にして欲し い。

2. パーシステントホモロジー

PHの基礎となっているのは、ホモロジーと いう数学である。ホモロジーはトポロジーとい う数学の一分野である。ホモロジーは深い内容 を持った数学であるが、その基本的な目標は穴 を数えることである。ただ、穴を数えるだけで はデータ解析のツールとしては力不足であり、 よりデータ解析に向いたツールとして PH が考 え出された。

2.1 パーシステント図

ここでは図1(a)のような点の集合(ポイン トクラウド)を例題として、PHについて解説 する。このポイントクラウドには大小2つのリ ング構造があるように「見える」が、点同士が 繋っているわけではない。そこで図1(b)-(e) のように円を各点に置くことで点同士が繋がり リング構造が実際に現れる。

ここで問題なのがこの円の半径で,図の通り 半径が小さすぎれば繋がりが切れるし,半径が 大きすぎればリングの内側が埋まってしまいリ ングでなくなってしまう。そこでどうするかと いうと半径を1つに決めるのではなく全ての半 径での構造を考えるのである。半径が0から大 きくなるに従ってリングが発生したり消滅した

りするのを調べるのが PH の重要なアイデアで ある。この図の場合には(b) で発生したリン グ X が(e) で消滅し,(c) で発生したリング Y が(d) で消滅する。リングが発生したタイ ミングの半径を発生時間(birth time),消滅の 半径を消滅時間(death time)と呼び,この2 つのペアを birth-death pair と呼ぶ。すべての ペアを平面上にプロットしたものをパーシステ ント図(PD)と呼ぶ(図1(f))¹。

このように半径を徐々に大きくするという過 程を考えることで形のマルチスケールな情報を 引き出すことができる。PDのX軸はリングを 構成する点の密度の情報,Y軸にはリングの大 きさの情報,をそれぞれ表現している。対角線 から離れた birth-death pair は発生から消滅ま での間隔が長いので他のものより重要性の高い 構造である²。

2次元では円を考えたが3次元では球を考え ることで PD が同様に計算できる。実は3次元 の図形にはホモロジー理論的には2種類の穴が あり,それに対応して PD も2種類定義される。 リング的な通り抜けできる構造を1次元の穴, 空洞や風船的な構造を2次元の穴と呼び, PD も対応して1次元と2次元のものがある。

3. PH の材料科学への応用について

PH を材料科学に応用する際には、入力デー タとして MD シミュレーションなどで得た原 子配置のデータや各種観測画像などを用いる。 原子配置データを入力に使う場合にはポイント クラウドとして取り扱う。

3.1 アモルファスの特徴付け

まずはアモルファスの原子配置の特徴付けに 関する研究 [4] について紹介する。この論文で は主に MD シミュレーションで得られたシリ カの原子配置データを、アモルファス、液体、 結晶の3つの状態に対して解析を行っている。

読者はよくご存知のことだと思うが、アモル ファスは結晶のような周期的な構造を取らず、 原子配置だけでは液体と区別するのは簡単では ない。構造因子における First Sharp Diffraction Peak などからアモルファスは中距離秩序と呼 ばれる秩序構造を持つと考えられている。この 構造を理解可能な形で記述したい、というのが この論文の目標である。

図2はこの論文から引用したそれぞれの原子 配置から計算された1次元のPDである。この 3つのPDはそれぞれ固有の特徴を持ち,この

¹ 数学的にこのようなペアリングが常に可能であること、およびペアの取り方にあいまいさがないこと、が証明されている。

² 数学的にもこの事実は証明されている。対角線から離れた birth-death pair は入力データが変動しても簡単に は消滅しないことが数学的に保証されている。一方対角線に近い birth-death pair は小さな入力データの変動 で消滅する可能性がある。 NEW GLASS Vol. 35 No. 129 2020

birth-death pair の分布がそれぞれに特徴的な 幾何構造を表している。

まず,結晶のPDは孤立した島状に点が分布 している。これは原子の相対的な位置関係にほ とんど自由度がないことを意味している。一方 アモルファスのPDには筋状の特徴的な分布が 見てとれる。これは以下に詳しく説明するよう に原子の相対的な位置関係に強い拘束がある が,自由度もあることを示している。液体のPD は幅広い分布を持っている。これはそういった 拘束が他に比べて弱いことを示している。

さらにアモルファスの PD には逆解析³で得 られたそれぞれの筋状の分布に対応する特徴的 なリング構造が図示されている。C_T は隣接する 3 原子(O-Si-O)が構成する三角形に対応して いる⁴。これはいわゆる近距離秩序に対応する構 造で,図2の3つの PD に共通してこの部分に ピークを持っている。C_P は O と Si の間の結合 によって構成されるリングで,アモルファスの 場合に特にはっきりと見えている。垂直な分布 となっているのは結合間距離のばらつきが小さ いこととリングの形が多様であることによる。

C₀は間にSi原子を挟んだ3つのO原子によ る三角形に対応している。筋状の構造が見える ということは、この3原子の相対位置に何らか の強い拘束があることを示している。この論文 ではより具体的にその拘束を調べており、実際 に低次元の自由度しか持たないことを確認して いる。このような構造がアモルファスの中距離 秩序を記述していると考えられる。間にSiを挟 んだ3つのO原子の3体相関の上の拘束を直 感で発見したり構造因子のような標準的な方法 で発見したりするのは難しく、こういった構造 をうまく発見できる所にPHの強みがある。

また,この論文では金属ガラスの原子配置に ついても同様に解析している。詳しくは説明し ないが,興味深いこととしては金属ガラスの解 析では2次元のPDのほうが1次元より解析に 有用だったという事実である。シリカの場合に はネットワーク構造が重要だったので1次元の PDのほうが有用で,金属ガラスではパッキン グによってできる隙間の形の情報が重要なため 2次元のPDが有用なのである。

3.2 ガラス質ポリマーの変形による微小なひび の形成

次に粗視化 MD シミュレーションによって 計算したガラス質ポリマーの変形による破壊の 過程を解析した論文 [9] を紹介する。ポリマー をビーズでモデル化(ビーズを鎖状に連結した ものを考える)し、計算機上でガラス状にした 後降伏するまで変形した。この変形で微小なひ びが大きくなり最終的に降伏に至る。この研究 の目標はこのひびの成長過程の解析である。結 論としては微小なひびが合併することで大きく なり、降伏に至るという示唆する結果を得てい る。

これを MD シミュレーションなどで実証す るにはひびの同定が問題になり、その目的で PH が有効活用されている。モデル上ではこの 物質は絡まった鎖として表現されているため、 ひびというものを効果的かつ効率的に同定する ことは簡単ではない。ひびを直接モデルで表現 する方法も考えられるが、汎用的ではない。PH の役割はこのひびの同定と定量化である。2次 元の PD を用い、各 birth-death pair の発生時間 や消滅時間からそのサイズ(小さな発生時間、 大きな消滅時間を持つ pair が大きなひびであ る)の決定が、さらに逆解析を用いることでそ の同定が、可能となる。

この研究では大きなひびを降伏直後の PD から同定し、そのひびの領域を時間逆向きに追跡

³ PD 上のそれぞれの birth-death pair に対応するリング / 空隙を元データ上から見つけ出す手法。 ⁴ この三角形では Si と O の間には結合があるが、2 つの O の間にはない。PH は空間的な近接性によってリン グ構造を見付けだすため、化学的結合がない所にもリング構造を見つけ出すこができる。

することでひびの成長を調べてる。逆解析を活 用することでその領域に現われた小さなひびの 同定も同様に行われている。これによって微小 なひびが合併して大きなひびが形成される様子 が観察された。

4. ソフトウェア

PD を使ったデータ解析のためのソフトウェ アは世界各地の研究者によって様々なものが開 発されている。本稿では我々が開発している HomCloud⁵を紹介させていただく。HomCloud は 3.2 で紹介したガラス質ポリマーの論文や, その他様々な研究 [5] [6] [7] [12] [13] です でに活用されている。

HomCloud は筆者(大林)が中心となり開発 している PH によるデータ解析ソフトウェアで ある。応用,特に材料科学に対する応用にフォー カスして開発を進めている。ポイントクラウド, 白黒画像,グレイスケール画像といったデータ を対象として解析することができる。データか らパーシステント図を計算することはもちろ ん,可視化, 逆解析, 機械学習との連携, といっ た機能に力を入れている⁶。

特に逆解析 [14] は他の PH ソフトウェアに はない, HomCloud 特有の機能である。図1(f) の2点は入力データの X と Y の 2 つのリング 構造に対応しているが, PD はその対応関係を 捨象することで形の情報を定量的に表現してい る。一方実際の解析ではこの対応を調べたいこ とも多い。逆解析は PD の各点に対応する幾何 構造を再現する機能である。PD による解析結 果を直感的に可視化して理解するのにも有用で あるし, 逆解析結果をさらに別の方法で解析す ることもできる。

HomCloud は Python によるインターフェー

スとコマンドラインインターフェースの2つの インターフェースを持っている。Python イン ターフェースは Python の科学技術計算エコシ ステムを活用したデータ解析が可能となるた め、特に機械学習を併用したい場合にはこれを 使ったほうが良いだろう。HomCloud のインス トールや使い方については HomCloud の Web サイトにドキュメント、チュートリアルが準備 されている。

材料科学への応用に関する課題

本節では PH を材料化学に適用するにあたっ ての課題とその対策について議論する。

5.1 原子の種類等の情報の活用

まずは原子配置データに PH を適用する際に 原子の種類などの情報を反映させるにはどうす ればよいかについて議論する。

一つの方法としては初期半径を原子ごとに割 り当てる方法である。2節の解説では半径0か ら徐々に大きくしたが,実はその初期半径を指 定することが可能である。ファンデルワールス 半径やイオン半径など,系にとって重要な半径 を各原子固有の半径とするとよい。論文[4]で はこの方法が使われている。

また別の方法として,数種類の原子のうち, 特定の種類の原子だけを用いる方法もある。論 文[5][6][7]などではこの方法が使われてい る。

5.2 どの次元の PD を使うべきか

どの次元の PD を使うかは問題に依存する。 3.1 節で紹介した研究ではガラスの種類(ネット ワークガラス / 金属ガラス)によってどの次元 の PD が有効かが異なった。3.2 節で紹介した研

⁵ https://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/homcloud/

⁶ 一方 PD の計算のためには Dipha, Phat [16], Ripser といった高速なソフトウェアを組み込んでいる。 https://github.com/DIPHA/dipha https://bitbucket.org/phat-code/phat/ https://github.com/Ripser/ripser などを参照。 NEW GLASS Vol. 35 No. 129 2020

究では微小なひびについて調べるため2次元の PD が自然であった。

そういった先験的な知識がないならば,すべ ての次元の PD を計算して比較するのが妥当で あろう。実際論文 [4] ではそういった検討がな されている。

5.3 PHと機械学習の組み合わせ

3節で紹介した2つの事例は共にPDを目で 見て解析していた。シリカの事例では結晶,ア モルファス,液体,の3つのPDは目で見てはっ きりした違いがあった。ガラス質ポリマーの事 例でも大きなひびを特定するためにはPDの動 画を目で見て特徴的なbirth-death pairを探し ていた。どちらの場合もはっきりした特徴が PDに現れるのでこれで問題なかった。

しかし、データの種類によってはPDを目で 見てもどの部分に注目すべきかわからない事例 も多い。そういった場合にはPDをさらに加工 して解析する。機械学習はこういった場合に有 効である。機械学習はデータに隠されたパター ンを見つけ出すことができ、これとPHを組み 合わせることでデータの幾何的パターンを見つ けることができる。機械学習の手法の入力は通 常ベクトルであるので、何らかの方法でPDを ベクトル化することでこの組み合わせを実現す る。このベクトルをPDからどのように構築す るかには、様々な研究がある。

材料科学データへのこの組み合わせの応用事 例としては [10] [11] [12]などが挙げられる。 [12] の研究では PH の逆解析も組み合わせた データ解析が行われている。

6. おわりに

本稿で紹介した PH はデータの形の情報を定 量的に特徴付けることが可能で, MD でシミュ レーション得られた原子配置データなどに応用 可能である。本稿では説明しなかったが画像に も適用可能で,特に CT 画像のような3次元 データを直接解析可能な点でも強力である。 図1のように円(球)を各点に貼り付けて半 径を大きくしていき,リングや空隙の発生と消 減を調べるのが PH の重要なアイデアである。 発生と消滅のペアを作りその半径をプロットし たものが PD である。画像の場合も似たような 方法でピクセル領域の増大によるリングや空隙 の発生消滅を解析する。

PHをさらに詳しく知りたければサーベイ論 文[15]が良い。この論文では数学的な詳細の 説明や様々なソフトウェアの性能比較などがな されている。機械学習のためのベクトル化の手 法についても簡単にではあるがサーベイされて いる。

PH が得意とする「形の情報」とはガラス,ポ リマー,タンパク質,磁性材料の磁区構造,焼 結鉱,と乱れた,非一様的な構造であると考え られる。こういった構造は定量化が簡単ではな く,PH という汎用的ツールが役立つと考えら れる。

謝辞

本稿で紹介した研究の一部は JST CREST JPMJCR15D の支援を受けたものである。また HomCloud の 開 発 に は JST CREST JPMJCR15D, JST PRESTO JPMJPR1923, JSPS 科研費 P 16K17638 および JP 19H00834, 総合科学技術・イノベーション会議の SIP (戦 略的イノベーション創造プログラム)「統合型材 料開発システムによるマテリアル革命」,の支援 を受けている。

参照文献

- H. Edelsbrunner, D. Letscher, A. Zomorodian, "Topological Persistence and Simplification," *Discrete and Computational Geometry*, Vol. 28, pp. 511-533, 2002.
- [2] G. Carlsson, "Topology and data," Bull. Amer. Math. Soc., Vol. 46, pp. 255-308, 2009.
- [3] H. Edelsbrunner , J. Harer, Computational topology: an introduction, American Mathematical Soc., 2010.

- [4] Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue, Y. Nishiura, "Hierarchical structures of amorphous solids characterized by persistent homology," *Proceedings of the National Academy of Sciences*, Vol. 113, pp. 7035-7040, 2016.
- [5] M. Murakami, S. Kohara, N. Hirao, T. Musso, A. S. Foster, Y. Idemoto, O. Sakata, Y. Ohishi, N. Kitamura, J. Akola, H. Inoue, A. Hirata, Y. Hiraoka, Y. Onodera, I. Obayashi, J. Kalikka, "Ultrahigh-pressure form of SiO2 glass with dense pyrite-type crystalline homology," *Phys. Rev. B*, Vol. 99, p. 045153, 2019.
- [6] Y. ONODERA, S. KOHARA, K. OHARA, A. MIZUNO, O. SAKATA, S. TAHARA, A. MASUNO, H. INOUE, M. SHIGA, A. HIRATA, K. TSUCHIYA, Y. HIRAOKA, I. OBAYASHI, "Understanding diffraction patterns of glassy, liquid and amorphous materials via persistent homology analyses," *Journal of the Ceramic Society of Japan*, Vol. 127, pp. 853-863, 2019.
- [7] Y. Onodera, Y. Takimoto, H. Hijiya, T. Taniguchi, S. Urata, S. Inaba, S. Fujita, I. Obayashi, Y. Hiraoka, S. Kohara, "Origin of the mixed alkali effect in silicate glass," *NPG Asia Materials*, Vol. 11, p. 75, 2019.
- [8] M. Saadatfar, H. Takeuchi, V. Robins, N. Francois, Y. Hiraoka, "Pore configuration landscape of granular crystallization," *Nature Communications*, Vol. 8, p. 15082, 2017.
- [9] T. Ichinomiya, I. Obayashi, Y. Hiraoka, "Persistent homology analysis of craze formation," *Phys. Rev. E*, Vol. 95, p. 012504, 2017.

- [10] C. Zixuan, M. Lin, W. Kedi, O. Kristopher, X. Kelin, W. Guo-Wei, A topological approach for protein classification, Vol. 3, 2015.
- [11] Z. Cang, G.-W. Wei, "TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions," *PLOS Computational Biology*, Vol. 13, p. e1005690, 2017.
- [12] M. Kimura, I. Obayashi, Y. Takeichi, R. Murao, Y. Hiraoka, "Non-empirical identification of trigger sites in heterogeneous processes using persistent homology," *Scientific Reports*, Vol. 8, p. 3553, 2018.
- [13] 拓.山田,雄.鈴木,千.三俣,寛.小野,哲. 上野,一.大林,裕.平岡,真.小嗣,"パーシ ステントホモロジーを用いた迷路状磁区構造 におけるトポロジカル欠陥の可視化,"表面と 真空, Vol. 62, pp. 153-160, 2019.
- [14] I. Obayashi, "Volume-Optimal Cycle: Tightest Representative Cycle of a Generator in Persistent Homology," SIAM Journal on Applied Algebra and Geometry, Vol. 2, pp. 508-534, 2018.
- [15] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, H. A. Harrington, "A roadmap for the computation of persistent homology," *EPJ Data Science*, Vol. 6, p. 17, 2017.
- [16] U. Bauer, M. Kerber, J. Reininghaus, H. Wagner, "Phat - Persistent Homology Algorithms Toolbox," *Journal of Symbolic Computation*, Vol. 78, pp. 76-90, 2017.