# ガラスを用いた酸化物系固体電解質の開発

(㈱オハラ 材料生産センター 研究開発部 素材研究課

小笠 和仁

## Application of glass technology to the development of oxide-based solid electrolytes

#### **Kazuhito Ogasa**

Material Development Sec. Resaerch and Development Dept. Material Production Center, OHARA INC.

### 1. はじめに

全固体二次電池は,安全で高容量な二次電池 として期待されている。全固体二次電池は,プ ロセス(成膜か,粉体焼結か),電解質材質(酸 化物系,硫化物系,その他)および活物質種類 (Li 金属負極,オリビン系高電位正極,その他) など,それぞれの方向から検討がされており, オハラでは全固体二次電池向け酸化物系固体電 解質の開発を行っている。本稿では全固体二次 電池の簡単な紹介と,ガラスを用いた全固体二 次電池向けの酸化物系固体電解質の開発につい て紹介する。

### 2. 全固体二次電池

全固体二次電池には、電解液を用いたリチウ

〒252-5286 神奈川県相模原市中央区小山 1-15-30 TEL 042-772-2101 FAX 042-718-5760 E-mail: k\_ogasa@ohara-inc.co.jp

ムイオン電池を高容量化する方向と、積層セラ ミックコンデンサを高容量化する方向の2つの 開発傾向があると考えている。酸化物系固体電 解質の検証試験として,積層セラミックコンデ ンサのようなビア構造の積層全固体二次電池の 作製を行った。ビア構造は、櫛型のコンデンサ の正極・負極それぞれを回転中心としたような 構造で、集電部が内側にあるので上下からプレ ス成型できる特徴がある。作製した積層全固体 二次電池の充放電特性を図1に示す。正極側の 固体電解質として Li<sub>12</sub>Al<sub>02</sub>Ti<sub>18</sub>P<sub>3</sub>O<sub>12</sub>, 負極側固 体電解質として Li<sub>115</sub>Y<sub>015</sub>Zr<sub>185</sub>P<sub>3</sub>O<sub>12</sub>, 焼結助剤と して Li<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-Al<sub>2</sub>O<sub>3</sub>系ガラス, 正極活物質とし てLiMn<sub>0.75</sub>Fe<sub>0.25</sub>PO<sub>4</sub>, 負極活物質として Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>を用いた。25 °Cで 1.2mAh, - 10 °C と いう極低温でも0.8mAhの放電容量を示してい る。作製した積層全固体二次電池の充放電特性 を通し、固体電解質の機能確認ができた。



図1 積層全固体二次電池の充放電特性(8層積層)

### 低温焼結用リチウムイオン伝導性ガラス (LIG-A)

全固体二次電池の酸化物系固体電解質に求め られる役割は、電極活物質の放電容量や固体電 解質のイオン伝導度を損なわずに低抵抗なイオ ン伝導パスと界面を形成することである。電極 活物質の放電容量や固体電解質のイオン伝導度 が低くなる主要因は、材料拡散による分解反応 であり高温で起こりやすくなる<sup>1)</sup>。そこでオハ ラでは低温焼結用の焼結助剤を開発している。 着眼点は3つ。まず界面でイオン伝導するよう に焼結助剤もある程度のリチウムイオン伝導性 がある材料とすること。つぎに材料拡散の影響 を考えて固体電解質と構成材料をそろえるこ と。最後に界面形成のために低温で溶融状態に なるガラスとすること。例えばAl(PO<sub>3</sub>)<sub>3</sub>, LiPO<sub>3</sub> などの融点はそれぞれ単体では 1500 ℃. 656 ℃と高いが、混合しガラス化することで融 点を600℃以下まで低温化できる。開発した Li<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-Al<sub>2</sub>O<sub>3</sub>系の低温焼結用リチウムイオ ン伝導性ガラス(LIG-A)について特性を表1 に示す。LIG-Aは、水に溶解するため材料に対 してコートも可能である。LIG-A の低温焼結効 果の確認をオハラ製のリチウムイオン伝導性ガ ラスセラミックスLICGC<sup>™</sup> PW-01 (以降 PW-01と称する)を用いて行った。

PW-01 単体が 900 ℃まで顕著な収縮挙動を示 さないのに対して, PW-01 に LIG-A を加えるこ とで 800 ℃以下まで収縮が低温化した。LIG-A でコートしたものについては, さらに低温での収 縮が確認された(図 2)。同様の試料を 860 ℃で 焼結したペレットのリチウムイオン伝導性は, PW-01 と LIG-A を混合したものが 1 × 10<sup>5</sup>S/ cm を示し, さらにコートしたものは 1 × 10<sup>4</sup>S/ cm を示した。このことより LIG-A が NASICON 系の固体電解質である PW-01 を低温焼結でき ることが確認できた。

### 4. 耐還元性固体電解質(a-LYZP)

Tiを含む Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>P<sub>3</sub>O<sub>12</sub> などの固体電解 質では Ti が還元してしまうため、Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> な ど Li vs 2V 以下の負極が使えない。そこで Ti の替わりに耐還元性の高い Zr を用い Al の替 わりに Y を用いた Li<sub>1.15</sub>Y<sub>0.15</sub>Zr<sub>1.85</sub>P<sub>3</sub>O<sub>12</sub> (LYZP) が、室温で 0.7 ×  $10^{4}$ S/cm と比較的高いイオン 伝導度を示す耐還元性固体電解質であることか ら注目されている<sup>2)</sup>。そこでオハラでも LYZP の作製と評価を行った<sup>3)</sup>。粒界抵抗を低減させ

| 基本組成                   | Li <sub>2</sub> O-P <sub>2</sub> O <sub>5</sub> -Al <sub>2</sub> O <sub>3</sub> |  |
|------------------------|---------------------------------------------------------------------------------|--|
| 密度(g/cm <sup>3</sup> ) | 2.4                                                                             |  |
| イオン伝導度(S/cm,25°C)      | $5 \times 10^{-8}$                                                              |  |
| ガラス転移点(℃)              | 350                                                                             |  |
| 結晶化開始温度(℃)             | 460                                                                             |  |
| 溶解度(25℃飽和水溶液中の溶質量)     | 20%以上                                                                           |  |

表1 LIG-A の基礎物性



るためにアモルファス状態に着目した。ジルコ ニアはチタニアと異なり熔解温度が非常に高く ガラス化が困難であるので、アモルファス原料 を用いて耐還元性固体電解質Li<sub>1.15</sub>Y<sub>0.15</sub>Zr<sub>1.85</sub>P  $_{3}O_{12}$ (a-LYZPと称する)の合成を行った。比較 としてアモルファス原料を用いないLi<sub>1.15</sub>Y<sub>0.15</sub>Zr  $_{185}P_{3}O_{12}$ (s-LYZPと称する)も作製した。a-LY ZPの原料としてはLi<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-Y<sub>2</sub>O<sub>3</sub>のガラスと リン酸ジルコニウム(第一希元素化学工業製 AZP-51)を用いた。s-LYZPの原料としては, ZrO<sub>2</sub>,NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub>,Li<sub>2</sub>CO<sub>3</sub>およびH<sub>3</sub>PO<sub>4</sub>を用 いた。

室温のイオン伝導度において, a-LYZP は, 5.9×10<sup>5</sup> S/cm を示し, 0.6×10<sup>5</sup>S/cm の s-LYZP に比べて1桁近く高くなった。固体電解質の抵 抗成分には粒内抵抗と粒界抵抗があるが粒界抵 抗が大きくなるとイオン伝導度が低くなりやす い。そのため二次電子像観察により接合状態を 確認した(図3)。アモルファス原料から作製し た a-LYZP は, s-LYZP に比べて, 粒子が小さ く,顕著な粒界がみられないことが確認できた。 イオン伝導度の差はこの粒界の差と推定でき る。

LYZP は Y 置換により 25 ℃での高イオン伝 導相が安定化することが確認されているが,ア モルファス原料を用いることでそれがさらに低 温化した。図4 にイオン伝導度の温度依存性を 示す。s-LYZP は 10 ℃以下において顕著な抵抗 の増加が認められ,活性化エネルギーも 0.41eV から 0.6eV と大幅に高くなった。イオン伝導度 の差は界面の状態によるものとも考えられる が,活性化エネルギー変化は低イオン伝導相へ の相変化が想定されるため室温と-10℃におけ る粉末 X 線回折測定を行った。室温から-10℃ に温度を下げることで,s-LYZP は高イオン伝 導相である Rhombohedral から低イオン伝導 相である Triclinic 相への 30% 以上相変化して いた。一方 a-LYZP は 10% に抑制できていた。 高イオン伝導相を安定化させるには格子定数に 変化があると考えリートベルト解析により確認 したところ表2のように a-LYZP は s-LYZP に 比べて a 軸, c 軸,および体積共に大きいこと がわかった。これが低温域での Rhombohedral 相の安定化に寄与していると考えている。

a-LYZPの耐還元性を確認するためにサイク リックボルタンメトリー測定を行った結果を図 5に示す。1V以下では還元電流が流れるが、1V から5Vまでの広い領域での電位窓があり、 TiO<sub>2</sub>やLi<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>を負極として使用できる酸化 物系の固体電解質になると期待できる。

### 5. 低温焼結高イオン伝導固体電解質 (LATP800)

 $Li_{1+x}Al_xTi_{2x}P_3O_{12}$ に AlPO<sub>4</sub> 成分を加えること で1×10<sup>3</sup>S/cmと高いイオン伝導度のリチウ ムイオン伝導性ガラスセラミックスが得られる ことが報告されている<sup>5)</sup>。しかし、これを全固 体二次電池の固体電解質として、低温焼結用リ チウムイオン伝導性ガラス(LIG-A)と共に焼 結しても1×10<sup>4</sup>S/cmの伝導度しか示さない。



図3 LYZP 焼結体表面の二次電子像観察結果



図4 LYZPのイオン伝導度温度依存性

|                                                                                                      | a<br>Å | c<br>Å | V<br>Å <sup>3</sup> |
|------------------------------------------------------------------------------------------------------|--------|--------|---------------------|
| a-LYZP                                                                                               | 8.882  | 22.16  | 1513.5              |
| s-LYZP                                                                                               | 8.871  | 22.12  | 1510.3              |
| Li <sub>1.15</sub> Y <sub>0.15</sub> Zr <sub>1.85</sub> P <sub>3</sub> O <sub>12</sub> <sup>2)</sup> | 8.873  | 22.16  | 1510.7              |
| LiZr <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> at 673K <sup>4</sup> )                             | 8.844  | 22.29  | 1509.9              |

表2 LYZPの格子定数比較

そこで LIG-A で低温焼結することを前提に, 焼 結後も高いリチウムイオン伝導性をもつ固体電 解質を開発した。具体的には Li<sub>1+x</sub>Al<sub>x</sub>Ti<sub>2x</sub>P<sub>3</sub>O<sub>12</sub> から AlPO<sub>4</sub> 成分を抜き, LIG-A との焼結後の界 面を最適化した。原材料には Li<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-Al<sub>2</sub>O<sub>3</sub>系 のガラスと TiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub> の仮焼粉を用いた。800 °C での焼成が可能であったので名称を LATP800 としている。LATP800 は LIG-A と混合するこ とにより, 800 °C 以下の焼成温度で 1 × 10<sup>3</sup>S/ cm のイオン伝導度を示し, 密度も 2.7g/cm<sup>3</sup> と



図6 LATP800の焼成温度とイオン伝導度と密度の関係



図5 a-LYZPのサイクリックボルタンメトリー

高い値を示した(図6)。

### 6. おわりに

本稿では,全固体二次電池用の酸化物系固体 電解質のガラスを用いた特性改善について報告 した。ガラスには界面形成や材料の低温反応な ど全固体二次電池においても有用な多くの可能 性がある。今後も引き続きガラス技術を基に全 固体二次電池の分野への貢献をしていきたい。

### 参考文献

- J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, J. Power Sources 192, 2009, 689
- Yutao Li, Meijing Liu, Kai Liu, Chang-An Wang, J. Power Sources 240, 2013, 50
- Kazuhito Ogasa, Keisuke Tomiyasu, Yasushi Inda, J. Electrochemical Society, 168, 2021, 010535
- M. Catti, A. Comotti, and S. Di Blas, Chem. Mater. 15, 2003, 1628
- 5) Jie Fu, J. Am. Ceram. Soc., 80, 1997, 1901