ガラスのレーザスクライブ機構

三星ダイヤモンド工業株式会社

山本幸司

Laser scribing mechanism of glass

Koji Yamamoto

Mitsuboshi Diamond Industrial Co., Ltd.

1. はじめに

一般的に,ガラス基板は,ガラス表面にスク ライビングホイール¹⁰でけがき線を形成し,そ のけがき線(以下,スクライブ線という)に沿 って曲げ応力を付加することにより分断され る。このガラス基板の分断方法は,工具を直接 ガラス表面に押し付ける機械的なスクライブ法 であるので,パーティクルの発生が避けられな い。また,分断エッジにマイクロクラックが生 じ,それが起点となってガラス基板が割れる場 合がある²⁰。

機械的なスクライブ法に対して,レーザ加熱 により熱応力を発生させ,非接触でスクライブ を行う方法がある。この方法をレーザスクライ ブという。レーザスクライブを用いると,図1 のような滑らかな分断面が得られるので,機械

図1 レーザスクライブの分断面

的なスクライブ法と比べて,パーティクルの発 生が抑制できるとともにガラス基板のエッジ強 度が維持される^{3,4)}。このような利点から,レー ザスクライブは,ガラス基板の有効なスクライ ブ法といえる。本稿では,レーザスクライブの 加工メカニズムについて紹介する。

2. レーザスクライブ法

まず、レーザスクライブの加工手順を記す。 スクライブを開始するガラス基板端にスクライ ブの起点となる初期亀裂を設け、次に、CO₂レー

^{〒564-0044} 大阪府吹田市南金田 1-4-37 TEL 06-6378-3364 FAX 06-6378-3550 E-mail:kyamamoto@mitsuboshi-dia.co.jp

図2 レーザスクライブの加熱域と冷却域の位置関係

ザを用いて表面で楕円形状となるようにビーム 成形する。初期亀裂生成後,レーザ光をガラス 表面に照射し,レーザ光とガラスに相対的な速 度を設け,スクライブ予定線上を加熱する。レー ザ光の後端付近をウォータージェットにより急 冷する。このような手順で,レーザスクライブ の冷却域において,初期亀裂を進展させ,レー ザスクライブ線を形成する。図2に,レーザビー ムの加熱域とウォータージェットによる冷却域 の位置関係を示す。

ガラスのレーザスクライブにおける 熱応力解析⁵⁻⁸⁾

レーザスクライブの亀裂進展機構を明らかに するため、板厚0.7mmのソーダガラスに対す るレーザスクライブ可能なレーザ出力 P = 58.7W, スクライブ速度 v=200mm/s の条件で, 有限要素法による三次元熱弾性解析を行った。 ここでは,図2におけるレーザビームによる加 熱域を2x₀=2.1mm,2y₀=22mm, ウォーター ジェットによる冷却域を 2x_c=2mm, 2v_c=3mm, 冷却点距離 d = 10mm とした。レーザ照射面に x-y座標をとり、y軸とx軸方向をそれぞれ スクライブ方向と板厚方向にとった。レーザス クライブの温度分布と応力分布の解析例を図3 に示す。図3(a)(i),(ii)のように、表面温度 はビーム中心より遅れて最大値に達し、その直 後,冷却され急激に低下する。内部温度は,z が増加するほど加熱と冷却の影響を受けにくく なり、冷却域では表面層だけが冷却されてい

る。これに伴い,図3(b)(i),(ii)のように,表 面近傍では加熱域で圧縮応力が発生し、 直後の 急速冷却よって急激に圧縮応力から引張応力へ 変化する。加熱域の内部では、こが増加して温 度が低下するほど圧縮応力が減少し、逆に引張 応力となっている。冷却直下の内部は圧縮応力 状態にある。これは、表面が急冷されても内部 がまだ高温状態にあるためである。図 3(a)(iii) からわかるように, x-z 面の温度分布は表面だ け冷却され、内部に冷却の影響をそれほど受け ていない高温域が残存する。応力分布は、図3 (b)(iii)のように、冷却されたガラス表面に引 張応力が発生する。内部に残存する高温域が圧 縮応力場となり、表面で発生した引張応力を助 長する。この冷却域表面に発生した大きな引張 応力により亀裂が進展すると考えられる。

4. レーザスクライブ機構

レーザスクライブ機構を図4の模式図を用い て簡単に説明する。レーザ照射によりガラス表 面が加熱され,表面から内部へ熱が伝わる(図

図4 レーザスクライブ機構の模式図

4(b))。レーザ加熱直後にウォータージェット により,表層が冷却される(図4(c))。これに より,冷却域表層で引張応力が発生して亀裂が 進展する。表層だけが冷却されるので,内部に 高温領域が残存する。これが圧縮応力場とな り,表層の引張応力の発生を助長すると考えら れる(図4(c),)。つまり,冷却域で,板厚方 向に温度分布が形成され引張応力が表層に生じ ることによって,レーザスクライブの亀裂が進 展する。

5. おわりに

レーザスクライブは,パーティクル発生の抑 制とガラス基板強度の維持という利点があるの で,ガラス基板の有効な加工法と考えられる。 本稿では,レーザスクライブの熱応力解析例を 紹介するとともに,レーザスクライブ機構につ いて簡単に述べた。また,ガラスのレーザスク ライブにおける板厚と線膨張係数の影響や, レーザクロススクライブ機構に関心のある向き は文献⁹⁻¹¹⁾を参照されたい。

図5 レーザスクライバ 12) (三星ダイヤモンド工業 製 MDLC 900)

近年,タッチパネル用ガラス基板の分断工程 に,図5のようなレーザスクライバ¹²⁾(三星ダ イヤモンド工業製 MDLC 900)が適用され,レー ザスクライブ技術が導入されている。技術進化 とともに,レーザスクライブにおいても,さら なる技術開発を進める必要があると考えてい る。

参考文献

- 1) 例えば、三星ダイヤモンド工業株式会社製品カタロ グ、(2004).
- 2) 渡部紀夫,ガラス工学ハンドブック,朝倉書店,392 (1999).
- 三宅泰明, FPD ガラス基板の切断技術, 砥粒加工学 会誌, 45-7, 342 (2001).
- C. Hermanns,Laser Separation of Flat Glass, Proc. 63 rd Laser Mater. Processing Conf., Jpn. Laser Processing. Soc., 105 (2005).
- 5)山本幸司,羽阪 登,森田英毅,大村悦二,ガラスの レーザスクライブにおける熱応力解析,精密工学会

誌,71-9,1157 (2005).

- 6)山本幸司,羽阪 登,森田英毅,大村悦二,ガラスの レーザスクライブにおける三次元熱応力解析,日本機 械学会論文集,C編,72-724,3927 (2006).
- K.Yamamoto, N.Hasaka, H.Morita, and E.Ohmura, Three Dimensional Thermal Stress Analysis on Laser Scribing of Glass, Precision Engineering, 32–4, 301 (2008).
- K.Yamamoto, N.Hasaka, H.Morita, and E.Ohmura, Thermal Stress Analysis on Laser Scribing of Glass, Journal of Laser Applications, 20–4, 193 (2008).
- 9) 山本幸司,羽阪 登,森田英毅,大村悦二,ガラスの レーザスクライブにおける板厚の影響,レーザ加工学 会誌,15-4,270 (2008).
- 10) 山本幸司,羽阪 登,森田英毅,大村悦二,ガラスの レーザスクライブにおける線膨張係数の影響,レーザ 加工学会誌,15-4,277 (2008).
- 11)山本幸司,羽阪 登,森田英毅,大村悦二:ガラスの レーザクロススクライブにおける熱応力解析,精密工 学会誌,74-9,937 (2008).
- 12) 例えば,三星ダイヤモンド工業株式会社製品カタロ グ,(2009).