特 集 ガラス表面の加工と解析

ガラス表面に係る評価事例の紹介

株式会社住化分析センター

三木 武

Introduction on evaluation case related to glass surface.

Takeshi Miki

Sumika Chemical Analysis Service, Ltd.

1. はじめに

光学製品の高性能化に伴いガラス等の表面状 態が重要になっている。表面処理によるガラス 等各種材料の表面形状変化やその形態評価,化 合物汚染状況の把握が必要であり,表面処理に 係る材料の評価も必要である。図1にガラス表 面の評価に利用される分析手法の一例を示す。 目的に応じて適用する手法を選択することにな るが,本稿では,ガラス表面に係る評価に関し て,化学的手法および物理的手法を用いた評価 事例について紹介する。

2. 化学的手法による表面評価事例

2.1 石英ガラス部材中の金属不純物分析

半導体製造プロセスにおける,洗浄,酸化・ 拡散工程, CVD 工程等では石英ガラスが広く

図1 ガラス表面の評価に利用される分析例

使用されているが、半導体デバイスの高集積化 に伴い、石英ガラスの高純度化が求められてい る。分析評価においては、少なくともプロセス 管理上の要求レベルよりも低い濃度を正確に測 定できる技術が求められるため、高度な前処理 技術と高感度の測定技術が必要となる。

表1に石英ガラス片について薬液浸漬後抽出 液を誘導結合プラズマ質量分析法(Inductively Coupled Plasma Mass Spectrometry:ICP-MS)で評価した分析例を記す¹⁾。当社では石英 ガラス部材中の金属不純物評価として,表面以 外の任意領域についても同様の高感度評価法を

^{〒300-3266} 茨城県つくば市北原6番 TEL 029-864-4741 FAX 029-864-4085 E-mail:miki@scas.co.jp

元素	単位面積当たりの原子数 (× 10 ¹⁰ atoms/cm²)
Al	1.4
Ca	0.97
Cr	0.74
Cu	0.61
Fe	0.69
К	0.99
Mg	1.6
Na	1.7
※方帯ガラフヒ	52mm ¥ 52mm ¥ +3.0mm

表1 石英ガラス片の表面汚染分析例

確立し受託サービスを行っている。

2.2 ガラス基板上の有機物汚染分析

半導体や LCD の製造プロセスでは、シリコ ンウェーハ表面やガラス基板表面への分子状汚 染物質 (Non-Particulate Airborne Molecular Contaminants: AMCs) が問題となっている。 有機汚染に関しては汚染物質ごとに挙動、トラ ブル発現が異なり、汚染物質毎またはトラブル 毎に除去対策が必要となる。

分析評価としては,有機物汚染を有機溶剤で 抽出し抽出液をガスクロマトグラフィー(GC) あるいはガスクロマトグラフィー-質量分析法 (GC-MS)で測定する方法(有機溶剤抽出法) とガラス基板に付着した有機物を加熱により脱 離させ,脱離した有機物を吸着剤に捕集した 後,測定装置に導入し評価する方法(加熱抽出 法)とがある。

加熱抽出法の場合,基板評価専用の石英チャ ンバーと加熱により脱離した有機物を捕集する 部分を備えた加熱処理装置があり(図2),ク リーンルーム内で一定時間放置したシリコンウ ェーハを測定した例を図3に示す。またそのク リーンルームのエアも評価しており,異なる成 分が基板表面に付着することが分かる²。シリ コンウェーハの基板に準じた試料サイズ,また はチャンバーに収まるように試料を裁断できれ

ば大型のガラス基板の評価も可能である³。

なお,有機物は GC あるいは GC-MS による 測定が一般的であるが,対象となる成分の極性 や分子量によってはイオンクロマトグラフィー (IC),キャピラリー電気泳動(CE)等でも測 定可能である。

3. 物理的手法による表面評価事例

3.1 X線光電子分光法(X-ray Photoelectron Spectroscopy: XPS)

XPS は,真空中で X 線を照射し,試料表面 構成元素の主として内殻の電子軌道から放出さ れる光電子の運動エネルギーと数から,元素の 同定・結合状態・半定量を行う分光手法であ る。測定対象物が絶縁物であっても比較的容易 に測定することが出来るため,ガラスにも適用 される。

ガラス表面の保護あるいは高機能化のために 各種シランカップリング剤による表面処理が施 される。表面処理層がμm以上の厚さで存在す ると赤外分光法 (FT-IR) で官能基に関する情 報は十分得られるが,数 nm オーダーの厚さに なってしまうと,ATR 法を利用しても,表面 処理層だけの情報を感度良く得ることはきわめ て難しくなってくる。

XPS では Ar 等のイオンによるエッチングを 併用することにより,深さ方向への組成分析が できるが,薄膜であること,表面処理層の化学 結合状態を破壊してしまう等の理由から本試料 への適用は難しい。当社では光電子の取り出し 角を変化させると情報深さが変わることを利用 した角度分解測定(Angle Resolve X-ray Photoelectron Spectrometer: AR-XPS)によっ て,数 nm オーダーの有機薄膜の評価が可能で ある。

図4はイソシアネート系シランカップリング 剤を塗布したガラスについて、同時角度分解型 -X線光電子分光装置で測定した例である⁴。 XPS装置はThermo Fisher Scientific社製 Theta-Probeを使用し、照射X線として単色 化Alka (1486.6 eV),最大エントロピー (Maximum Entropy Method: MEM)を用いたアル ゴリズムでシミュレーション計算を行いプロフ ァイルを抽出した。解析の結果、イソシアネー ト基がガラス基板表面と結合を介し、フッ素含 有骨格由来のピーク (CF₂-CF₂, -CF₃)が表面

図4 同時角度分解-XPS によるシランカップリング 剤を塗布したガラス表面の評価例

側に存在する等,モデル予想図を裏付けする分 布を示すことが分かる。このような数 nm オー ダーの有機薄膜について非破壊で官能基の分布 状況まで把握できる分析装置は限られており, 表面処理層の化学情報を得るための有効な手法 の一つとして考えられる。

3.2 飛行時間型二次イオン質量分析法(Time of flight Secondary ion Mass Spectrometry:TOF-SIMS)

真空中で試料表面に Ga, Cs, Bi 等のイオン (一次イオン)を照射すると、試料表面から様々 な粒子が放出されるが、その中でイオンとして 放出された粒子(二次イオン)の質量分析を行 う手法が SIMS (二次イオン質量分析法: Secondary Ion Mass Spectrometry) である。一 般に SIMS というと一次イオン照射量の多いダ イナミック SIMS を指すが、TOF-SIMS は一 次イオン照射の少ないスタティック SIMS の一 手法であり、パルス状にした少量の一次イオン 照射により発生した二次イオンを飛行時間型の 質量分析計で計測する。有機物を測定した場 合,二次イオンにはフラグメントイオンや,分 子イオンが含まれるため、得られたマススペク トルから元素定性のみならず、物質を同定する ことも可能である。二次イオンのほとんどは試 料表面第一層から放出されることから、TOF-SIMS の情報深さは非常に浅く、極めて表面に 敏感な手法と言える。また. 質量分解能が高い ことや、サブµmの空間分解能で2次イオンイ メージ測定(マッピング)が可能である等,ガ ラス等固体試料最表面の有機物汚染評価には強 力な手法である⁵⁾。

ガラス基板上に発生したシミを TOF-SIMS (負イオンマススペクトル) にて分析した事例 を図5に示す⁽⁶⁾。

正常部からはガラス成分である Si 酸化物由 来のイオンのみが検出されているのに対し,シ ミ部からはアニオン系界面活性剤と推測される アルキルベンゼンスルホン酸由来のイオンが強

図5 ガラス基板に発生したシミの分析例(負イオン マススペクトル)

く検出されていることが分かる。

また約150 um×150 um領域における二次イ オンイメージを図6に示す。アルキルベンゼン スルホン酸はシミ部に分布しており、ガラス由 来イオンとは負の相関が見られる。以上の結果 から、シミはリンスが不十分であったことによ る洗剤残りであるか、洗剤の飛沫が付着したも のであると推測される。

なお, TOF-SIMS で得られるマススペクト ルはクロマトなどで成分分離したものではな く, 全ての成分が合わさったものであること, 成分により感度が大きく異なり,同一成分でも マトリックスにより感度が変動することがある 等,データの解釈には注意が必要である。

アルキルベンゼンスルホン酸のイメージ

図6 ガラス基板に発生したシミの分析例(二次イオ ンイメージ)

4. 終わりに

本稿では限られた事例しか紹介できなかった が, ガラスに係る製品開発やトラブル解決にお いて分析は重要である。また単一の方法で結果 を導ける場合もあれば、複数の手法を用いて多 方面から結果を導き出す場合も様々ある。当社 は様々な分析を駆使してお客様の製造・研究開 発支援の一助となるように努力を怠らない所存 である (詳細は http://www.scas.co.jp を 参照願いたい)。

参考文献

- 1)株式会社住化分析センター編 テクニカルニュー スNo.334 (2008)
- 2)野中辰夫:社団法人ニューガラスフォーラム編 第1回評価技術研究会発表資料17~18(2007)
- 3) 情報機構編 ガラスの加工技術と製品応用, 251~ 253 (2009)
- 4) 三木武:社団法人ニューガラスフォーラム編 第3 回評価技術研究会発表資料 39~41 (2009)
- 5) 日本表面科学会編 二次イオン質量分析法, 63~ 69. 丸善(1999)
- 6) 情報機構編 ガラスの加工技術と製品応用,262~ 264 (2009)